Spaces:
Sleeping
Sleeping
File size: 24,013 Bytes
01664b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
from fvcore.common.file_io import PathManager
from detectron2.utils.visualizer import (
Visualizer,
ColorMode,
_create_text_labels,
GenericMask,
)
from detectron2.structures import (
BitMasks,
Boxes,
BoxMode,
Keypoints,
PolygonMasks,
RotatedBoxes,
)
from detectron2.utils.colormap import random_color
from PIL import Image
import numpy as np
from numpy.linalg import norm
import math
MOTION_TYPE = {0: "rotation", 1: "translation"}
_COLORS_CAT = {
0: np.array([166, 206, 227]) / 255,
1: np.array([31, 120, 180]) / 255,
2: np.array([202, 178, 214]) / 255,
3: np.array([106, 61, 154]) / 255,
4: np.array([178, 223, 138]) / 255,
5: np.array([51, 160, 44]) / 255,
}
_COLORS_LEVEL = {
0: np.array([0, 255, 0]) / 255,
1: np.array([255, 128, 0]) / 255,
2: np.array([255, 0, 0]) / 255,
}
def getFocalLength(FOV, height, width=None):
# FOV is in radius, should be vertical angle
if width == None:
f = height / (2 * math.tan(FOV / 2))
return f
else:
fx = height / (2 * math.tan(FOV / 2))
fy = fx / height * width
return (fx, fy)
def camera_to_image(point, is_real=False, intrinsic_matrix=None):
point_camera = np.array(point)
# Calculate the camera intrinsic parameters (they are fixed in this project)
if not is_real:
# Below is for the MoionNet synthetic dataset intrinsic
FOV = 50
img_width = img_height = 256
fx, fy = getFocalLength(FOV / 180 * math.pi, img_height, img_width)
cy = img_height / 2
cx = img_width / 2
x = point_camera[0] * fx / (-point_camera[2]) + cx
y = -(point_camera[1] * fy / (-point_camera[2])) + cy
else:
# Below is the for MotionREAL dataset
point_2d = np.dot(intrinsic_matrix, point_camera[:3])
x = point_2d[0] / point_2d[2]
y = point_2d[1] / point_2d[2]
return (x, y)
def rotation_from_vectors(source, dest):
a, b = (source / np.linalg.norm(source)).reshape(3), (
dest / np.linalg.norm(dest)
).reshape(3)
v = np.cross(a, b)
c = np.dot(a, b)
s = np.linalg.norm(v)
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
rmat = np.eye(3) + kmat + np.matmul(kmat, kmat) * ((1 - c) / (s ** 2))
return rmat
def rotatePoint(x, y, angle, scale):
rad = np.pi * angle / 180
x2 = np.cos(rad) * x - np.sin(rad) * y
y2 = np.sin(rad) * x + np.cos(rad) * y
return [x2 * scale, y2 * scale]
def circlePoints(axis, radius=0.5, num=50):
angles = np.linspace(0, 2 * np.pi, num, endpoint=False)
x_vec = np.cos(angles) * radius
y_vec = np.sin(angles) * radius
z_vec = np.zeros_like(x_vec) + 0.5
points = np.stack((x_vec, y_vec, z_vec), axis=0)
rot = rotation_from_vectors(np.array([0, 0, 1]), np.asarray(axis))
points = np.matmul(rot, points)
return points
def get_iou(bb1, bb2):
x_left = max(bb1[0], bb2[0])
y_top = max(bb1[1], bb2[1])
x_right = min(bb1[0] + bb1[2], bb2[0] + bb2[2])
y_bottom = min(bb1[1] + bb1[3], bb2[1] + bb2[3])
if x_right < x_left or y_bottom < y_top:
return 0.0
area = (x_right - x_left) * (y_bottom - y_top)
bb1_area = bb1[2] * bb1[3]
bb2_area = bb2[2] * bb2[3]
iou = area / float(bb1_area + bb2_area - area)
return iou
class MotionVisualizer(Visualizer):
def draw_gt_instance(self, anno, part_id_json, is_real=False, intrinsic_matrix=None, line_length=1):
# All annotations have been in the camera coordinate
masks = [anno["segmentation"]]
boxes = [BoxMode.convert(anno["bbox"], anno["bbox_mode"], BoxMode.XYXY_ABS)]
labels = [anno["category_id"]]
colors = None
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get(
"thing_colors"
):
colors = [
self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
for c in labels
]
origins = [anno["motion"]["current_origin"]]
# Calculate the 2d origin (Only consider draw only one origin)
origins_4d = [origin[:] + [1] for origin in origins]
origin_2d = [camera_to_image(origin, is_real, intrinsic_matrix) for origin in origins_4d]
axises = [anno["motion"]["current_axis"]]
new_point = list(np.array(origins[0]) + line_length * np.array(axises[0]))
new_point = new_point[:] + [1]
new_point = camera_to_image(new_point, is_real, intrinsic_matrix)
arrow_p0 = rotatePoint(
new_point[0] - origin_2d[0][0], new_point[1] - origin_2d[0][1], 30, 0.1
)
arrow_p1 = rotatePoint(
new_point[0] - origin_2d[0][0], new_point[1] - origin_2d[0][1], -30, 0.1
)
circle_p = circlePoints(axises[0], 0.1, 50)
circle_p = line_length * circle_p + np.repeat(
np.asarray(origins[0])[:, np.newaxis], 50, axis=1
)
circle_p = circle_p.transpose()
circle_p_2d = np.asarray([camera_to_image(p, is_real, intrinsic_matrix) for p in circle_p])
self.draw_line(
[origin_2d[0][0], new_point[0]],
[origin_2d[0][1], new_point[1]],
color=_COLORS_LEVEL[0],
linewidth=2,
)
self.draw_line(
[new_point[0] - arrow_p0[0], new_point[0]],
[new_point[1] - arrow_p0[1], new_point[1]],
color=_COLORS_LEVEL[0],
linewidth=2,
)
self.draw_line(
[new_point[0] - arrow_p1[0], new_point[0]],
[new_point[1] - arrow_p1[1], new_point[1]],
color=_COLORS_LEVEL[0],
linewidth=2,
)
self.draw_polygon(
circle_p_2d, color=_COLORS_LEVEL[0], edge_color=_COLORS_LEVEL[0], alpha=0.0
)
mtype = 0 if anno["motion"]["type"] == "rotation" else 1
if not mtype:
self.draw_circle(origin_2d[0], color=_COLORS_LEVEL[0], radius=5)
names = self.metadata.get("thing_classes", None)
if names:
labels = [names[i] + "_" + anno["motion"]["type"] for i in labels]
labels = [
"{}".format(i) + ("|crowd" if a.get("iscrowd", 0) else "")
for i, a in zip(labels, [anno])
]
cat_id = anno["category_id"]
self.overlay_instances(
labels=labels,
boxes=boxes,
masks=masks,
assigned_colors=[_COLORS_CAT[cat_id * 2 + mtype]],
)
part_id_json["partId"] = anno["motion"]["partId"]
part_id_json["type"] = anno["motion"]["type"]
part_id_json["category_id"] = anno["category_id"]
return self.output
def draw_prior(self, anno):
# All annotations have been in the camera coordinate
labels = [0]
origin = anno["start"]
origin_2d = anno["start_2d"]
new_point = anno["end_2d"]
axises = [anno["axises"]]
print(axises)
projection = anno["projMat"]
arrow_p0 = rotatePoint(
new_point[0] - origin_2d[0], new_point[1] - origin_2d[1], 30, 0.1
)
arrow_p1 = rotatePoint(
new_point[0] - origin_2d[0], new_point[1] - origin_2d[1], -30, 0.1
)
circle_p = circlePoints(axises[0], 0.1, 50)
circle_p = circle_p + np.repeat(np.asarray(origin)[:, np.newaxis], 50, axis=1)
# circle_p = circle_p.transpose()
circle_p = np.vstack((circle_p, np.ones(circle_p.shape[1])))
circle_p_2d = np.dot(projection, circle_p)
circle_p_2d = circle_p_2d / circle_p_2d[3, :]
circle_p_2d = circle_p_2d[:2, :]
circle_p_2d[0, :] = (circle_p_2d[0, :] + 1) / 2 * anno["img_size"]
circle_p_2d[1, :] = (-circle_p_2d[1, :] + 1) / 2 * anno["img_size"]
circle_p_2d = circle_p_2d.transpose()
axis_diff = anno["error"]
if axis_diff <= 2:
axis_color = _COLORS_LEVEL[0]
elif axis_diff > 2 and axis_diff <= 10:
axis_color = _COLORS_LEVEL[1]
elif axis_diff > 10:
axis_color = _COLORS_LEVEL[2]
print(axis_diff)
self.draw_line(
[origin_2d[0], new_point[0]],
[origin_2d[1], new_point[1]],
color=axis_color,
linewidth=2,
)
self.draw_line(
[new_point[0] - arrow_p0[0], new_point[0]],
[new_point[1] - arrow_p0[1], new_point[1]],
color=axis_color,
linewidth=2,
)
self.draw_line(
[new_point[0] - arrow_p1[0], new_point[0]],
[new_point[1] - arrow_p1[1], new_point[1]],
color=axis_color,
linewidth=2,
)
self.draw_polygon(
circle_p_2d, color=axis_color, edge_color=axis_color, alpha=0.0
)
mtype = 1
if not mtype:
self.draw_circle(origin_2d, color=_COLORS_LEVEL[0], radius=5)
cat_id = 0
labels = [
"{}".format(i) + ("|crowd" if a.get("iscrowd", 0) else "")
for i, a in zip(labels, [anno])
]
# self.overlay_instances(
# labels=labels, boxes=None, masks=None, assigned_colors=[_COLORS_CAT[cat_id*2+mtype]]
# )
return self.output
def draw_pred_instance(self, prediction, d, match, is_real=False, intrinsic_matrix=None, line_length=1, no_mask=False, diagonal_length=-1):
if "annotations" in d:
boxes = prediction.get("bbox", None)
anno = None
annos = d["annotations"]
max_iou = -1
if not len(annos):
return None
for gt_anno in annos:
iou = get_iou(gt_anno["bbox"], boxes)
if np.isnan(iou):
return False
if iou > max_iou:
max_iou = iou
anno = gt_anno
else:
max_iou = -1
boxes = prediction.get("bbox", None)
anno = d
boxes = prediction.get("bbox", None)
iou = get_iou(anno["bbox"], boxes)
if iou > max_iou:
max_iou = iou
boxes = [BoxMode.convert(boxes, BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)]
# Based on the motion type, determine to visualize the predicted motion origin or gt motion origin
# For translation joint, the motion origin is meaningless
pred_type = prediction["mtype"]
if pred_type == 1:
pred_origin = anno["motion"]["current_origin"]
else:
pred_origin = prediction["morigin"]
# Prepare the predicted origin and predicted axis
pred_origin_4d = pred_origin + [1]
pred_origin_2d = camera_to_image(pred_origin_4d, is_real, intrinsic_matrix)
pred_axis = np.array(prediction["maxis"])
pred_axis = list(pred_axis / norm(pred_axis))
pred_new_point = list(np.array(pred_origin) + line_length * np.array(pred_axis))
pred_new_point = pred_new_point + [1]
pred_new_point = camera_to_image(pred_new_point, is_real, intrinsic_matrix)
# Prepare the gt origin and gt axis
gt_origin = anno["motion"]["current_origin"]
gt_origin_4d = gt_origin + [1]
gt_origin_2d = camera_to_image(gt_origin_4d, is_real, intrinsic_matrix)
gt_axis = anno["motion"][
"current_axis"
] # gt_axis has been normalized in the annotation
gt_new_point = list(np.array(gt_origin) + line_length * np.array(gt_axis))
gt_new_point = gt_new_point + [1]
gt_new_point = camera_to_image(gt_new_point, is_real, intrinsic_matrix)
# Caluculate the axis and origin error to determine the color for the visualization of axis and origin
axis_diff = (
np.arccos(
np.abs(
np.dot(np.array(gt_axis), np.array(pred_axis))
/ (norm(pred_axis) * norm(gt_axis))
)
)
/ np.pi
* 180.0
)
if axis_diff <= 5:
axis_color = _COLORS_LEVEL[0]
elif axis_diff > 5 and axis_diff <= 10:
axis_color = _COLORS_LEVEL[1]
elif axis_diff > 10:
axis_color = _COLORS_LEVEL[2]
if diagonal_length == -1:
raise ValueError("diagonal length error")
origin_diff = np.linalg.norm(
np.cross(np.array(pred_origin) - np.array(gt_origin), np.array(gt_axis))
) / np.linalg.norm(gt_axis) / diagonal_length
if origin_diff <= 0.1:
origin_color = _COLORS_LEVEL[0]
elif origin_diff > 0.1 and origin_diff <= 0.25:
origin_color = _COLORS_LEVEL[1]
elif origin_diff > 0.25:
origin_color = _COLORS_LEVEL[2]
# Visualize gt
gt_color = np.array([0, 0, 255]) / 255
gt_arrow_p0 = rotatePoint(
gt_new_point[0] - gt_origin_2d[0],
gt_new_point[1] - gt_origin_2d[1],
30,
0.1,
)
gt_arrow_p1 = rotatePoint(
gt_new_point[0] - gt_origin_2d[0],
gt_new_point[1] - gt_origin_2d[1],
-30,
0.1,
)
gt_circle_p = circlePoints(gt_axis, 0.1, 50)
gt_circle_p = line_length * gt_circle_p + np.repeat(
np.asarray(gt_origin)[:, np.newaxis], 50, axis=1
)
gt_circle_p = gt_circle_p.transpose()
gt_circle_p_2d = np.asarray([camera_to_image(p, is_real, intrinsic_matrix) for p in gt_circle_p])
self.draw_line(
[gt_origin_2d[0], gt_new_point[0]],
[gt_origin_2d[1], gt_new_point[1]],
color=gt_color,
linewidth=2,
)
self.draw_line(
[gt_new_point[0] - gt_arrow_p0[0], gt_new_point[0]],
[gt_new_point[1] - gt_arrow_p0[1], gt_new_point[1]],
color=gt_color,
linewidth=2,
)
self.draw_line(
[gt_new_point[0] - gt_arrow_p1[0], gt_new_point[0]],
[gt_new_point[1] - gt_arrow_p1[1], gt_new_point[1]],
color=gt_color,
linewidth=2,
)
self.draw_polygon(
gt_circle_p_2d, color=gt_color, edge_color=gt_color, alpha=0.0
)
if pred_type == 0:
# self.draw_text("origin_error: {:.3f}".format(origin_diff), (origin_2d[0][0], origin_2d[0][1]-10*text_y_offset), color="c")
self.draw_circle(gt_origin_2d, color=gt_color, radius=5)
# Visualize the predicted axis
pred_arrow_p0 = rotatePoint(
pred_new_point[0] - pred_origin_2d[0],
pred_new_point[1] - pred_origin_2d[1],
30,
0.1,
)
pred_arrow_p1 = rotatePoint(
pred_new_point[0] - pred_origin_2d[0],
pred_new_point[1] - pred_origin_2d[1],
-30,
0.1,
)
pred_circle_p = circlePoints(pred_axis, 0.1, 50)
pred_circle_p = line_length * pred_circle_p + np.repeat(
np.asarray(pred_origin)[:, np.newaxis], 50, axis=1
)
pred_circle_p = pred_circle_p.transpose()
pred_circle_p_2d = np.asarray([camera_to_image(p, is_real, intrinsic_matrix) for p in pred_circle_p])
# text_y_offset = 1 if (new_point[1]-origin_2d[0][1]) > 0 else -1
# self.draw_text("axis_error: {:.3f}".format(axis_diff), (origin_2d[0][0], origin_2d[0][1]-20*text_y_offset), color="tan")
self.draw_line(
[pred_origin_2d[0], pred_new_point[0]],
[pred_origin_2d[1], pred_new_point[1]],
color=axis_color,
linewidth=2,
)
self.draw_line(
[pred_new_point[0] - pred_arrow_p0[0], pred_new_point[0]],
[pred_new_point[1] - pred_arrow_p0[1], pred_new_point[1]],
color=axis_color,
linewidth=2,
)
self.draw_line(
[pred_new_point[0] - pred_arrow_p1[0], pred_new_point[0]],
[pred_new_point[1] - pred_arrow_p1[1], pred_new_point[1]],
color=axis_color,
linewidth=2,
)
self.draw_polygon(
pred_circle_p_2d, color=axis_color, edge_color=axis_color, alpha=0.0
)
if pred_type == 0:
# self.draw_text("origin_error: {:.3f}".format(origin_diff), (origin_2d[0][0], origin_2d[0][1]-10*text_y_offset), color="c")
self.draw_circle(pred_origin_2d, color=origin_color, radius=5)
# Assign color to the segmentation
cat_id = prediction.get("category_id", None)
color_cat = _COLORS_CAT[cat_id * 2 + pred_type]
scores = [prediction.get("score", None)]
classes = [prediction.get("category_id", None)]
labels = _create_text_labels_motion(
classes,
scores,
self.metadata.get("thing_classes", None),
MOTION_TYPE[pred_type],
)
keypoints = prediction.get("keypoints", None)
if prediction.get("segmentation"):
import pycocotools.mask as mask_util
masks = [prediction.get("segmentation")]
else:
masks = None
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get(
"thing_colors"
):
colors = [
self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
for c in classes
]
alpha = 0.8
else:
colors = [color_cat]
alpha = 0.5
if self._instance_mode == ColorMode.IMAGE_BW:
self.output.img = self._create_grayscale_image(
(mask_util.decode(prediction.get("segmentation")).any() > 0).numpy()
)
alpha = 0.3
# import pdb
# pdb.set_trace()
match["iou"] = max_iou
# Add the gt information
match["gt"] = {}
match["gt"]["partId"] = anno["motion"]["partId"]
match["gt"]["label"] = anno["motion"]["part_label"]
match["gt"]["type"] = anno["motion"]["type"]
match["gt"]["category_id"] = anno["category_id"]
match["gt"]["origin"] = gt_origin
match["gt"]["axis"] = gt_axis
# add the prediction information
match["pred"] = {}
match["pred"]["score"] = scores[0]
match["pred"]["type"] = pred_type
match["pred"]["category_id"] = cat_id
match["pred"]["origin"] = pred_origin
match["pred"]["axis"] = pred_axis
# add additional information
match["axis_error"] = axis_diff
match["origin_error"] = origin_diff
match["match"] = (
int(pred_type)
== int(
list(MOTION_TYPE.keys())[
list(MOTION_TYPE.values()).index(anno["motion"]["type"])
]
)
) and (cat_id == anno["category_id"])
if no_mask:
masks = None
self.overlay_instances(
masks=masks,
boxes=boxes,
labels=labels,
keypoints=keypoints,
assigned_colors=colors,
alpha=alpha,
)
return self.output
def draw_pred_only(self, prediction, prob):
scores = prediction.scores if prediction.has("scores") else None
if scores.numpy()[0] < prob:
return None
origins = list(prediction.morigin.numpy())
origins = [list(origin) for origin in origins]
axises = list(prediction.maxis.numpy())
axises = [list(axis) for axis in axises]
types = list(prediction.mtype.numpy())
classes = prediction.pred_classes if prediction.has("pred_classes") else None
color_cat = _COLORS_CAT[classes.numpy()[0] * 2 + types[0]]
origins_4d = [origin[:] + [1] for origin in origins]
origin_2d = [camera_to_image(origin) for origin in origins_4d]
new_point = list(np.array(origins[0]) + np.array(axises[0]))
new_point = new_point[:] + [1]
new_point = camera_to_image(new_point)
axis_color = _COLORS_LEVEL[0]
origin_color = _COLORS_LEVEL[0]
arrow_p0 = rotatePoint(
new_point[0] - origin_2d[0][0], new_point[1] - origin_2d[0][1], 30, 0.1
)
arrow_p1 = rotatePoint(
new_point[0] - origin_2d[0][0], new_point[1] - origin_2d[0][1], -30, 0.1
)
circle_p = circlePoints(axises[0], 0.1, 50)
circle_p = circle_p + np.repeat(
np.asarray(origins[0])[:, np.newaxis], 50, axis=1
)
circle_p = circle_p.transpose()
circle_p_2d = np.asarray([camera_to_image(p) for p in circle_p])
# text_y_offset = 1 if (new_point[1]-origin_2d[0][1]) > 0 else -1
# self.draw_text("axis_error: {:.3f}".format(axis_diff), (origin_2d[0][0], origin_2d[0][1]-20*text_y_offset), color="tan")
self.draw_line(
[origin_2d[0][0], new_point[0]],
[origin_2d[0][1], new_point[1]],
color=axis_color,
linewidth=2,
)
self.draw_line(
[new_point[0] - arrow_p0[0], new_point[0]],
[new_point[1] - arrow_p0[1], new_point[1]],
color=axis_color,
linewidth=2,
)
self.draw_line(
[new_point[0] - arrow_p1[0], new_point[0]],
[new_point[1] - arrow_p1[1], new_point[1]],
color=axis_color,
linewidth=2,
)
self.draw_polygon(
circle_p_2d, color=axis_color, edge_color=axis_color, alpha=0.0
)
if types[0] == 0:
# self.draw_text("origin_error: {:.3f}".format(origin_diff), (origin_2d[0][0], origin_2d[0][1]-10*text_y_offset), color="c")
self.draw_circle(origin_2d[0], color=origin_color, radius=5)
boxes = prediction.pred_boxes if prediction.has("pred_boxes") else None
labels = _create_text_labels_motion(
classes,
scores,
self.metadata.get("thing_classes", None),
MOTION_TYPE[types[0]],
)
keypoints = (
prediction.pred_keypoints if prediction.has("pred_keypoints") else None
)
if prediction.has("pred_masks"):
masks = np.asarray(prediction.pred_masks)
masks = [
GenericMask(x, self.output.height, self.output.width) for x in masks
]
else:
masks = None
if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get(
"thing_colors"
):
colors = [
self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
for c in classes
]
alpha = 0.8
else:
colors = [color_cat]
alpha = 0.5
if self._instance_mode == ColorMode.IMAGE_BW:
self.output.img = self._create_grayscale_image(
(prediction.pred_masks.any(dim=0) > 0).numpy()
)
alpha = 0.3
self.overlay_instances(
masks=masks,
boxes=boxes,
labels=labels,
keypoints=keypoints,
assigned_colors=colors,
alpha=alpha,
)
return self.output
def _create_text_labels_motion(classes, scores, class_names, motion_type):
"""
Args:
classes (list[int] or None):
scores (list[float] or None):
class_names (list[str] or None):
Returns:
list[str] or None
"""
labels = None
if classes is not None and class_names is not None and len(class_names) > 1:
labels = [class_names[i] for i in classes]
labels = [label + "_" + motion_type for label in labels]
if scores is not None:
if labels is None:
labels = ["{:.0f}%".format(s * 100) for s in scores]
else:
labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)]
return labels
|