Spaces:
Running
Running
local app demo is working
Browse files- README.md +40 -0
- app.py +42 -22
- dev-requirements.txt +0 -3
- examples/174-8460.png +0 -0
- examples/174-8460_d.png +0 -0
- examples/187-0.png +0 -0
- examples/187-0_d.png +0 -0
- examples/187-23040.png +0 -0
- examples/187-23040_d.png +0 -0
- inference.py +7 -346
- requirements.txt +3 -1
- visualization.py +353 -0
README.md
CHANGED
@@ -11,3 +11,43 @@ license: mit
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
# Installation
|
16 |
+
|
17 |
+
To setup the environment, run the following (recommended in a virtual environment):
|
18 |
+
```
|
19 |
+
# install base requirements
|
20 |
+
pip install -r pre-requirements.txt
|
21 |
+
pip install -r requirements.txt
|
22 |
+
|
23 |
+
cd mask2former/modeling/pixel_decoder/ops
|
24 |
+
python setup.py build install
|
25 |
+
|
26 |
+
# Option A: running locally only
|
27 |
+
pip install open3d==0.17.0
|
28 |
+
|
29 |
+
# Option B: running over ssh connection / headless environment
|
30 |
+
# in a separate folder
|
31 |
+
git clone https://github.com/isl-org/Open3D.git
|
32 |
+
cd Open3D/
|
33 |
+
mkdir build && cd build
|
34 |
+
cmake -DENABLE_HEADLESS_RENDERING=ON -DBUILD_GUI=OFF -DBUILD_WEBRTC=OFF -DUSE_SYSTEM_GLEW=OFF -DUSE_SYSTEM_GLFW=OFF ..
|
35 |
+
make -j$(nproc)
|
36 |
+
make install-pip-package
|
37 |
+
# to test custom build
|
38 |
+
cd ../examples/python/visualization/
|
39 |
+
python headless_rendering.py
|
40 |
+
```
|
41 |
+
|
42 |
+
The setup with pre-requirements.txt and requirements.txt resolves the issue that certain packages need to be installed
|
43 |
+
prior to others. By default, most additional packages should be added to requirements.txt.
|
44 |
+
|
45 |
+
## Usage
|
46 |
+
To startup the application locally, run
|
47 |
+
```
|
48 |
+
gradio app.py
|
49 |
+
```
|
50 |
+
|
51 |
+
You can view the app on the specified port (usually 7860). To run over an ssh connection, setup port forwarding using
|
52 |
+
`-L 7860:localhost:7860` when you create your ssh connection. Note that you will need to install Open3D in headless
|
53 |
+
rendering for this to work.
|
app.py
CHANGED
@@ -14,7 +14,7 @@ from inference import main, setup_cfg
|
|
14 |
|
15 |
# internal settings
|
16 |
NUM_PROCESSES = 1
|
17 |
-
CROP =
|
18 |
SCORE_THRESHOLD = 0.8
|
19 |
MAX_PARTS = 5
|
20 |
ARGS = SimpleNamespace(
|
@@ -24,6 +24,7 @@ ARGS = SimpleNamespace(
|
|
24 |
output=".output",
|
25 |
cpu=True,
|
26 |
)
|
|
|
27 |
|
28 |
outputs = []
|
29 |
|
@@ -52,16 +53,6 @@ def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_sample
|
|
52 |
images[file].append(os.path.join(sub_path, image_file))
|
53 |
return images
|
54 |
|
55 |
-
def get_generator(images):
|
56 |
-
def gen():
|
57 |
-
while True:
|
58 |
-
for im in images:
|
59 |
-
time.sleep(0.025)
|
60 |
-
yield im
|
61 |
-
time.sleep(3)
|
62 |
-
|
63 |
-
return gen
|
64 |
-
|
65 |
# clear old predictions
|
66 |
for path in os.listdir(ARGS.output):
|
67 |
full_path = os.path.join(ARGS.output, path)
|
@@ -89,15 +80,32 @@ def predict(rgb_image: str, depth_image: str, intrinsics: np.ndarray, num_sample
|
|
89 |
# process output
|
90 |
# TODO: may want to select these in decreasing order of score
|
91 |
image_files = find_images(ARGS.output)
|
92 |
-
|
93 |
for count, part in enumerate(image_files):
|
94 |
if count < MAX_PARTS:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
|
|
|
|
|
|
101 |
|
102 |
|
103 |
with gr.Blocks() as demo:
|
@@ -145,7 +153,7 @@ with gr.Blocks() as demo:
|
|
145 |
interactive=True,
|
146 |
)
|
147 |
num_samples = gr.Number(
|
148 |
-
value=
|
149 |
label="Number of samples",
|
150 |
show_label=True,
|
151 |
interactive=True,
|
@@ -154,16 +162,28 @@ with gr.Blocks() as demo:
|
|
154 |
maximum=20,
|
155 |
)
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
submit_btn = gr.Button("Run model")
|
158 |
|
159 |
# TODO: do we want to set a maximum limit on how many parts we render? We could also show the number of components
|
160 |
# identified.
|
161 |
-
|
162 |
-
|
|
|
163 |
|
164 |
-
# TODO: maybe need to use a queue here so we don't overload the instance
|
165 |
submit_btn.click(
|
166 |
-
fn=predict, inputs=[rgb_image, depth_image, intrinsics, num_samples], outputs=
|
167 |
)
|
168 |
|
169 |
demo.queue(api_open=False)
|
|
|
14 |
|
15 |
# internal settings
|
16 |
NUM_PROCESSES = 1
|
17 |
+
CROP = False
|
18 |
SCORE_THRESHOLD = 0.8
|
19 |
MAX_PARTS = 5
|
20 |
ARGS = SimpleNamespace(
|
|
|
24 |
output=".output",
|
25 |
cpu=True,
|
26 |
)
|
27 |
+
NUM_SAMPLES = 10
|
28 |
|
29 |
outputs = []
|
30 |
|
|
|
53 |
images[file].append(os.path.join(sub_path, image_file))
|
54 |
return images
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# clear old predictions
|
57 |
for path in os.listdir(ARGS.output):
|
58 |
full_path = os.path.join(ARGS.output, path)
|
|
|
80 |
# process output
|
81 |
# TODO: may want to select these in decreasing order of score
|
82 |
image_files = find_images(ARGS.output)
|
83 |
+
outputs = []
|
84 |
for count, part in enumerate(image_files):
|
85 |
if count < MAX_PARTS:
|
86 |
+
outputs.append([Image.open(im) for im in image_files[part]])
|
87 |
+
|
88 |
+
return [
|
89 |
+
*[gr.update(value=out[0], visible=True) for out in outputs],
|
90 |
+
*[gr.update(visible=False) for _ in range(MAX_PARTS - len(outputs))],
|
91 |
+
]
|
92 |
+
|
93 |
+
|
94 |
+
def get_trigger(idx: int, fps: int = 40, oscillate: bool = True):
|
95 |
+
def iter_images(*args, **kwargs):
|
96 |
+
if idx < len(outputs):
|
97 |
+
for im in outputs[idx]:
|
98 |
+
time.sleep(1.0 / fps)
|
99 |
+
yield im
|
100 |
+
if oscillate:
|
101 |
+
for im in reversed(outputs[idx]):
|
102 |
+
time.sleep(1.0 / fps)
|
103 |
+
yield im
|
104 |
|
105 |
+
else:
|
106 |
+
raise ValueError("Could not find any images to load into this module.")
|
107 |
+
|
108 |
+
return iter_images
|
109 |
|
110 |
|
111 |
with gr.Blocks() as demo:
|
|
|
153 |
interactive=True,
|
154 |
)
|
155 |
num_samples = gr.Number(
|
156 |
+
value=NUM_SAMPLES,
|
157 |
label="Number of samples",
|
158 |
show_label=True,
|
159 |
interactive=True,
|
|
|
162 |
maximum=20,
|
163 |
)
|
164 |
|
165 |
+
examples = gr.Examples(
|
166 |
+
examples=[
|
167 |
+
["examples/59-4860.png", "examples/59-4860_d.png"],
|
168 |
+
["examples/174-8460.png", "examples/174-8460_d.png"],
|
169 |
+
["examples/187-0.png", "examples/187-0_d.png"],
|
170 |
+
["examples/187-23040.png", "examples/187-23040_d.png"],
|
171 |
+
],
|
172 |
+
inputs=[rgb_image, depth_image],
|
173 |
+
api_name=False,
|
174 |
+
examples_per_page=2,
|
175 |
+
)
|
176 |
+
|
177 |
submit_btn = gr.Button("Run model")
|
178 |
|
179 |
# TODO: do we want to set a maximum limit on how many parts we render? We could also show the number of components
|
180 |
# identified.
|
181 |
+
images = [gr.Image(type="pil", label=f"Part {idx + 1}", visible=False) for idx in range(MAX_PARTS)]
|
182 |
+
for idx, image_comp in enumerate(images):
|
183 |
+
image_comp.select(get_trigger(idx), inputs=[], outputs=image_comp, api_name=False)
|
184 |
|
|
|
185 |
submit_btn.click(
|
186 |
+
fn=predict, inputs=[rgb_image, depth_image, intrinsics, num_samples], outputs=images, api_name=False
|
187 |
)
|
188 |
|
189 |
demo.queue(api_open=False)
|
dev-requirements.txt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
black==23.9.1
|
2 |
-
gradio==3.44.3
|
3 |
-
huggingface-hub==0.17.2
|
|
|
|
|
|
|
|
examples/174-8460.png
ADDED
examples/174-8460_d.png
ADDED
examples/187-0.png
ADDED
examples/187-0_d.png
ADDED
examples/187-23040.png
ADDED
examples/187-23040_d.png
ADDED
inference.py
CHANGED
@@ -19,7 +19,6 @@ import argparse
|
|
19 |
import logging
|
20 |
import os
|
21 |
import time
|
22 |
-
from copy import deepcopy
|
23 |
from typing import Any
|
24 |
|
25 |
import imageio
|
@@ -34,13 +33,19 @@ from detectron2.projects.deeplab import add_deeplab_config
|
|
34 |
from detectron2.structures import instances
|
35 |
from detectron2.utils import comm
|
36 |
from detectron2.utils.logger import setup_logger
|
37 |
-
from PIL import Image, ImageChops
|
38 |
|
39 |
from mask2former import (
|
40 |
add_maskformer2_config,
|
41 |
add_motionnet_config,
|
42 |
)
|
43 |
from utilities import prediction_to_json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# import based on torch version. Required for model loading. Code is taken from fvcore.common.checkpoint, in order to
|
46 |
# replicate model loading without the overhead of setting up an OPDTrainer
|
@@ -63,9 +68,7 @@ TYPE_CLASSIFICATION = {
|
|
63 |
1: "translation",
|
64 |
}
|
65 |
|
66 |
-
POINT_COLOR = [1, 0, 0] # red for demonstration
|
67 |
ARROW_COLOR = [0, 1, 0] # green
|
68 |
-
IMAGE_EXTENSIONS = (".png", ".jpg", ".jpeg")
|
69 |
|
70 |
|
71 |
def get_parser() -> argparse.ArgumentParser:
|
@@ -336,348 +339,6 @@ def predict(model: nn.Module, inp: list[dict[str, Any]]) -> list[dict[str, insta
|
|
336 |
return out
|
337 |
|
338 |
|
339 |
-
def generate_rotation_visualization(
|
340 |
-
pcd: o3d.geometry.PointCloud,
|
341 |
-
axis_arrow: o3d.geometry.TriangleMesh,
|
342 |
-
mask: np.ndarray,
|
343 |
-
axis_vector: np.ndarray,
|
344 |
-
origin: np.ndarray,
|
345 |
-
range_min: float,
|
346 |
-
range_max: float,
|
347 |
-
num_samples: int,
|
348 |
-
output_dir: str,
|
349 |
-
) -> None:
|
350 |
-
"""
|
351 |
-
Generate visualization files for a rotation motion of a part.
|
352 |
-
|
353 |
-
:param pcd: point cloud object representing 2D image input (RGBD) as a point cloud
|
354 |
-
:param axis_arrow: mesh object representing axis arrow of rotation to be rendered in visualization
|
355 |
-
:param mask: mask np.array of dimensions (height, width) representing the part to be rotated in the image
|
356 |
-
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of rotation
|
357 |
-
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of rotation
|
358 |
-
:param range_min: float representing the minimum range of motion in radians
|
359 |
-
:param range_max: float representing the maximum range of motion in radians
|
360 |
-
:param num_samples: number of sample states to visualize in between range_min and range_max of motion
|
361 |
-
:param output_dir: string path to directory in which to save visualization output
|
362 |
-
"""
|
363 |
-
angle_in_radians = np.linspace(range_min, range_max, num_samples)
|
364 |
-
angles_in_degrees = angle_in_radians * 180 / np.pi
|
365 |
-
|
366 |
-
for idx, angle_in_degrees in enumerate(angles_in_degrees):
|
367 |
-
# Make a copy of your original point cloud and arrow for each rotation
|
368 |
-
rotated_pcd = deepcopy(pcd)
|
369 |
-
rotated_arrow = deepcopy(axis_arrow)
|
370 |
-
|
371 |
-
angle_rad = np.radians(angle_in_degrees)
|
372 |
-
rotated_pcd = rotate_part(rotated_pcd, mask, axis_vector, origin, angle_rad)
|
373 |
-
|
374 |
-
# Create a Visualizer object for each rotation
|
375 |
-
vis = o3d.visualization.Visualizer()
|
376 |
-
vis.create_window()
|
377 |
-
|
378 |
-
# Add the rotated geometries
|
379 |
-
vis.add_geometry(rotated_pcd)
|
380 |
-
vis.add_geometry(rotated_arrow)
|
381 |
-
|
382 |
-
# Apply the additional rotation around x-axis if desired
|
383 |
-
angle_x = np.pi * 5.5 / 5 # 198 degrees
|
384 |
-
rotation_matrix = o3d.geometry.get_rotation_matrix_from_axis_angle(np.asarray([1, 0, 0]) * angle_x)
|
385 |
-
rotated_pcd.rotate(rotation_matrix, center=rotated_pcd.get_center())
|
386 |
-
rotated_arrow.rotate(rotation_matrix, center=rotated_pcd.get_center())
|
387 |
-
|
388 |
-
# Capture and save the image
|
389 |
-
output_filename = f"{output_dir}/{idx}.png"
|
390 |
-
vis.capture_screen_image(output_filename, do_render=True)
|
391 |
-
vis.destroy_window()
|
392 |
-
|
393 |
-
|
394 |
-
def generate_translation_visualization(
|
395 |
-
pcd: o3d.geometry.PointCloud,
|
396 |
-
axis_arrow: o3d.geometry.TriangleMesh,
|
397 |
-
mask: np.ndarray,
|
398 |
-
end: np.ndarray,
|
399 |
-
range_min: float,
|
400 |
-
range_max: float,
|
401 |
-
num_samples: int,
|
402 |
-
output_dir: str,
|
403 |
-
) -> None:
|
404 |
-
"""
|
405 |
-
Generate visualization files for a translation motion of a part.
|
406 |
-
|
407 |
-
:param pcd: point cloud object representing 2D image input (RGBD) as a point cloud
|
408 |
-
:param axis_arrow: mesh object representing axis arrow of translation to be rendered in visualization
|
409 |
-
:param mask: mask np.array of dimensions (height, width) representing the part to be translated in the image
|
410 |
-
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of translation
|
411 |
-
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of translation
|
412 |
-
:param range_min: float representing the minimum range of motion
|
413 |
-
:param range_max: float representing the maximum range of motion
|
414 |
-
:param num_samples: number of sample states to visualize in between range_min and range_max of motion
|
415 |
-
:param output_dir: string path to directory in which to save visualization output
|
416 |
-
"""
|
417 |
-
translate_distances = np.linspace(range_min, range_max, num_samples)
|
418 |
-
for idx, translate_distance in enumerate(translate_distances):
|
419 |
-
translated_pcd = deepcopy(pcd)
|
420 |
-
translated_arrow = deepcopy(axis_arrow)
|
421 |
-
|
422 |
-
translated_pcd = translate_part(translated_pcd, mask, end, translate_distance.item())
|
423 |
-
|
424 |
-
# Create a Visualizer object for each rotation
|
425 |
-
vis = o3d.visualization.Visualizer()
|
426 |
-
vis.create_window()
|
427 |
-
|
428 |
-
# Add the translated geometries
|
429 |
-
vis.add_geometry(translated_pcd)
|
430 |
-
vis.add_geometry(translated_arrow)
|
431 |
-
|
432 |
-
# Apply the additional rotation around x-axis if desired
|
433 |
-
# TODO: not sure why we need this rotation for the translation, and when it would be desired
|
434 |
-
angle_x = np.pi * 5.5 / 5 # 198 degrees
|
435 |
-
R = o3d.geometry.get_rotation_matrix_from_axis_angle(np.asarray([1, 0, 0]) * angle_x)
|
436 |
-
translated_pcd.rotate(R, center=translated_pcd.get_center())
|
437 |
-
translated_arrow.rotate(R, center=translated_pcd.get_center())
|
438 |
-
|
439 |
-
# Capture and save the image
|
440 |
-
output_filename = f"{output_dir}/{idx}.png"
|
441 |
-
vis.capture_screen_image(output_filename, do_render=True)
|
442 |
-
vis.destroy_window()
|
443 |
-
|
444 |
-
|
445 |
-
def get_rotation_matrix_from_vectors(vec1: np.ndarray, vec2: np.ndarray) -> np.ndarray:
|
446 |
-
"""
|
447 |
-
Find the rotation matrix that aligns vec1 to vec2
|
448 |
-
|
449 |
-
:param vec1: A 3d "source" vector
|
450 |
-
:param vec2: A 3d "destination" vector
|
451 |
-
:return: A transform matrix (3x3) which when applied to vec1, aligns it with vec2.
|
452 |
-
"""
|
453 |
-
a, b = (vec1 / np.linalg.norm(vec1)).reshape(3), (vec2 / np.linalg.norm(vec2)).reshape(3)
|
454 |
-
v = np.cross(a, b)
|
455 |
-
c = np.dot(a, b)
|
456 |
-
s = np.linalg.norm(v)
|
457 |
-
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
|
458 |
-
rotation_matrix = np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s**2))
|
459 |
-
return rotation_matrix
|
460 |
-
|
461 |
-
|
462 |
-
def draw_line(start_point: np.ndarray, end_point: np.ndarray) -> o3d.geometry.TriangleMesh:
|
463 |
-
"""
|
464 |
-
Generate 3D mesh representing axis from start_point to end_point.
|
465 |
-
|
466 |
-
:param start_point: np.ndarray of dimensions (3, ) representing the start point of the axis
|
467 |
-
:param end_point: np.ndarray of dimensions (3, ) representing the end point of the axis
|
468 |
-
:return: mesh object representing axis from start to end
|
469 |
-
"""
|
470 |
-
# Compute direction vector and normalize it
|
471 |
-
direction_vector = end_point - start_point
|
472 |
-
normalized_vector = direction_vector / np.linalg.norm(direction_vector)
|
473 |
-
|
474 |
-
# Compute the rotation matrix to align the Z-axis with the desired direction
|
475 |
-
target_vector = np.array([0, 0, 1])
|
476 |
-
rot_mat = get_rotation_matrix_from_vectors(target_vector, normalized_vector)
|
477 |
-
|
478 |
-
# Create the cylinder (shaft of the arrow)
|
479 |
-
cylinder_length = 0.9 # 90% of the total arrow length, you can adjust as needed
|
480 |
-
cylinder_radius = 0.01 # Adjust the thickness of the arrow shaft
|
481 |
-
cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=cylinder_radius, height=cylinder_length)
|
482 |
-
|
483 |
-
# Move base of cylinder to origin, rotate, then translate to start_point
|
484 |
-
cylinder.translate([0, 0, 0])
|
485 |
-
cylinder.rotate(rot_mat, center=[0, 0, 0])
|
486 |
-
cylinder.translate(start_point)
|
487 |
-
|
488 |
-
# Create the cone (head of the arrow)
|
489 |
-
cone_height = 0.1 # 10% of the total arrow length, adjust as needed
|
490 |
-
cone_radius = 0.03 # Adjust the size of the arrowhead
|
491 |
-
cone = o3d.geometry.TriangleMesh.create_cone(radius=cone_radius, height=cone_height)
|
492 |
-
|
493 |
-
# Move base of cone to origin, rotate, then translate to end of cylinder
|
494 |
-
cone.translate([-0, 0, 0])
|
495 |
-
cone.rotate(rot_mat, center=[0, 0, 0])
|
496 |
-
cone.translate(start_point + normalized_vector * 0.4)
|
497 |
-
|
498 |
-
arrow = cylinder + cone
|
499 |
-
return arrow
|
500 |
-
|
501 |
-
|
502 |
-
def rotate_part(
|
503 |
-
pcd: o3d.geometry.PointCloud, mask: np.ndarray, axis_vector: np.ndarray, origin: np.ndarray, angle_rad: float
|
504 |
-
) -> o3d.geometry.PointCloud:
|
505 |
-
"""
|
506 |
-
Generate rotated point cloud of mask based on provided angle around axis.
|
507 |
-
|
508 |
-
:param pcd: point cloud object representing points of image
|
509 |
-
:param mask: mask np.array of dimensions (height, width) representing the part to be rotated in the image
|
510 |
-
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of rotation
|
511 |
-
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of rotation
|
512 |
-
:param angle_rad: angle in radians to rotate mask part
|
513 |
-
:return: point cloud object after rotation of masked part
|
514 |
-
"""
|
515 |
-
# Get the coordinates of the point cloud as a numpy array
|
516 |
-
points_np = np.asarray(pcd.points)
|
517 |
-
|
518 |
-
# Convert point cloud colors to numpy array for easier manipulation
|
519 |
-
colors_np = np.asarray(pcd.colors)
|
520 |
-
|
521 |
-
# Create skew-symmetric matrix from end
|
522 |
-
K = np.array(
|
523 |
-
[
|
524 |
-
[0, -axis_vector[2], axis_vector[1]],
|
525 |
-
[axis_vector[2], 0, -axis_vector[0]],
|
526 |
-
[-axis_vector[1], axis_vector[0], 0],
|
527 |
-
]
|
528 |
-
)
|
529 |
-
|
530 |
-
# Compute rotation matrix using Rodrigues' formula
|
531 |
-
R = np.eye(3) + np.sin(angle_rad) * K + (1 - np.cos(angle_rad)) * np.dot(K, K)
|
532 |
-
|
533 |
-
# Iterate over the mask and rotate the points corresponding to the object pixels
|
534 |
-
for i in range(mask.shape[0]):
|
535 |
-
for j in range(mask.shape[1]):
|
536 |
-
if mask[i, j] > 0: # This condition checks if the pixel belongs to the object
|
537 |
-
point_index = i * mask.shape[1] + j
|
538 |
-
|
539 |
-
# Translate the point such that the rotation origin is at the world origin
|
540 |
-
translated_point = points_np[point_index] - origin
|
541 |
-
|
542 |
-
# Rotate the translated point
|
543 |
-
rotated_point = np.dot(R, translated_point)
|
544 |
-
|
545 |
-
# Translate the point back
|
546 |
-
points_np[point_index] = rotated_point + origin
|
547 |
-
|
548 |
-
colors_np[point_index] = POINT_COLOR
|
549 |
-
|
550 |
-
# Update the point cloud's coordinates
|
551 |
-
pcd.points = o3d.utility.Vector3dVector(points_np)
|
552 |
-
|
553 |
-
# Update point cloud colors
|
554 |
-
pcd.colors = o3d.utility.Vector3dVector(colors_np)
|
555 |
-
|
556 |
-
return pcd
|
557 |
-
|
558 |
-
|
559 |
-
def translate_part(pcd, mask, axis_vector, distance):
|
560 |
-
"""
|
561 |
-
Generate translated point cloud of mask based on provided angle around axis.
|
562 |
-
|
563 |
-
:param pcd: point cloud object representing points of image
|
564 |
-
:param mask: mask np.array of dimensions (height, width) representing the part to be translated in the image
|
565 |
-
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of translation
|
566 |
-
:param distance: distance within coordinate system to translate mask part
|
567 |
-
:return: point cloud object after translation of masked part
|
568 |
-
"""
|
569 |
-
normalized_vector = axis_vector / np.linalg.norm(axis_vector)
|
570 |
-
translation_vector = normalized_vector * distance
|
571 |
-
|
572 |
-
# Convert point cloud colors to numpy array for easier manipulation
|
573 |
-
colors_np = np.asarray(pcd.colors)
|
574 |
-
|
575 |
-
# Get the coordinates of the point cloud as a numpy array
|
576 |
-
points_np = np.asarray(pcd.points)
|
577 |
-
|
578 |
-
# Iterate over the mask and assign the color to the points corresponding to the object pixels
|
579 |
-
for i in range(mask.shape[0]):
|
580 |
-
for j in range(mask.shape[1]):
|
581 |
-
if mask[i, j] > 0: # This condition checks if the pixel belongs to the object
|
582 |
-
point_index = i * mask.shape[1] + j
|
583 |
-
colors_np[point_index] = POINT_COLOR
|
584 |
-
points_np[point_index] += translation_vector
|
585 |
-
|
586 |
-
# Update point cloud colors
|
587 |
-
pcd.colors = o3d.utility.Vector3dVector(colors_np)
|
588 |
-
|
589 |
-
# Update the point cloud's coordinates
|
590 |
-
pcd.points = o3d.utility.Vector3dVector(points_np)
|
591 |
-
|
592 |
-
return pcd
|
593 |
-
|
594 |
-
|
595 |
-
def batch_trim(images_path: str, save_path: str, identical: bool = False) -> None:
|
596 |
-
"""
|
597 |
-
Trim white spaces from all images in the given path and save new images to folder.
|
598 |
-
|
599 |
-
:param images_path: local path to folder containing all images. Images must have the extension ".png", ".jpg", or
|
600 |
-
".jpeg".
|
601 |
-
:param save_path: local path to folder in which to save trimmed images
|
602 |
-
:param identical: if True, will apply same crop to all images, else each image will have its whitespace trimmed
|
603 |
-
independently. Note that in the latter case, each image may have a slightly different size.
|
604 |
-
"""
|
605 |
-
|
606 |
-
def get_trim(im):
|
607 |
-
"""Trim whitespace from an image and return the cropped image."""
|
608 |
-
bg = Image.new(im.mode, im.size, im.getpixel((0, 0)))
|
609 |
-
diff = ImageChops.difference(im, bg)
|
610 |
-
diff = ImageChops.add(diff, diff, 2.0, -100)
|
611 |
-
bbox = diff.getbbox()
|
612 |
-
return bbox
|
613 |
-
|
614 |
-
if identical: #
|
615 |
-
images = []
|
616 |
-
optimal_box = None
|
617 |
-
|
618 |
-
# load all images
|
619 |
-
for image_file in sorted(os.listdir(images_path)):
|
620 |
-
if image_file.endswith(IMAGE_EXTENSIONS):
|
621 |
-
image_path = os.path.join(images_path, image_file)
|
622 |
-
images.append(Image.open(image_path))
|
623 |
-
|
624 |
-
# find optimal box size
|
625 |
-
for im in images:
|
626 |
-
bbox = get_trim(im)
|
627 |
-
if bbox is None:
|
628 |
-
bbox = (0, 0, im.size[0], im.size[1]) # bound entire image
|
629 |
-
|
630 |
-
if optimal_box is None:
|
631 |
-
optimal_box = bbox
|
632 |
-
else:
|
633 |
-
optimal_box = (
|
634 |
-
min(optimal_box[0], bbox[0]),
|
635 |
-
min(optimal_box[1], bbox[1]),
|
636 |
-
max(optimal_box[2], bbox[2]),
|
637 |
-
max(optimal_box[3], bbox[3]),
|
638 |
-
)
|
639 |
-
|
640 |
-
# apply cropping, if optimal box was found
|
641 |
-
for idx, im in enumerate(images):
|
642 |
-
im.crop(optimal_box)
|
643 |
-
im.save(os.path.join(save_path, f"{idx}.png"))
|
644 |
-
im.close()
|
645 |
-
|
646 |
-
else: # trim each image separately
|
647 |
-
for image_file in os.listdir(images_path):
|
648 |
-
if image_file.endswith(IMAGE_EXTENSIONS):
|
649 |
-
image_path = os.path.join(images_path, image_file)
|
650 |
-
with Image.open(image_path) as im:
|
651 |
-
bbox = get_trim(im)
|
652 |
-
trimmed = im.crop(bbox) if bbox else im
|
653 |
-
trimmed.save(os.path.join(save_path, image_file))
|
654 |
-
|
655 |
-
|
656 |
-
def create_gif(image_folder_path: str, num_samples: int, gif_filename: str = "output.gif") -> None:
|
657 |
-
"""
|
658 |
-
Create gif out of folder of images and save to file.
|
659 |
-
|
660 |
-
:param image_folder_path: path to folder containing images (non-recursive). Assumes images are named as {i}.png for
|
661 |
-
each of i from 0 to num_samples.
|
662 |
-
:param num_samples: number of sampled images to compile into gif.
|
663 |
-
:param gif_filename: filename for gif, defaults to "output.gif"
|
664 |
-
"""
|
665 |
-
# Generate a list of image filenames (assuming the images are saved as 0.png, 1.png, etc.)
|
666 |
-
image_files = [f"{image_folder_path}/{i}.png" for i in range(num_samples)]
|
667 |
-
|
668 |
-
# Read the images using imageio
|
669 |
-
images = [imageio.imread(image_file) for image_file in image_files]
|
670 |
-
assert all(
|
671 |
-
images[0].shape == im.shape for im in images
|
672 |
-
), f"Found some images with a different shape: {[im.shape for im in images]}"
|
673 |
-
|
674 |
-
# Save images as a gif
|
675 |
-
gif_output_path = f"{image_folder_path}/{gif_filename}"
|
676 |
-
imageio.mimsave(gif_output_path, images, duration=0.1)
|
677 |
-
|
678 |
-
return
|
679 |
-
|
680 |
-
|
681 |
def main(
|
682 |
cfg: CfgNode,
|
683 |
rgb_image: str,
|
|
|
19 |
import logging
|
20 |
import os
|
21 |
import time
|
|
|
22 |
from typing import Any
|
23 |
|
24 |
import imageio
|
|
|
33 |
from detectron2.structures import instances
|
34 |
from detectron2.utils import comm
|
35 |
from detectron2.utils.logger import setup_logger
|
|
|
36 |
|
37 |
from mask2former import (
|
38 |
add_maskformer2_config,
|
39 |
add_motionnet_config,
|
40 |
)
|
41 |
from utilities import prediction_to_json
|
42 |
+
from visualization import (
|
43 |
+
draw_line,
|
44 |
+
generate_rotation_visualization,
|
45 |
+
generate_translation_visualization,
|
46 |
+
batch_trim,
|
47 |
+
create_gif,
|
48 |
+
)
|
49 |
|
50 |
# import based on torch version. Required for model loading. Code is taken from fvcore.common.checkpoint, in order to
|
51 |
# replicate model loading without the overhead of setting up an OPDTrainer
|
|
|
68 |
1: "translation",
|
69 |
}
|
70 |
|
|
|
71 |
ARROW_COLOR = [0, 1, 0] # green
|
|
|
72 |
|
73 |
|
74 |
def get_parser() -> argparse.ArgumentParser:
|
|
|
339 |
return out
|
340 |
|
341 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
def main(
|
343 |
cfg: CfgNode,
|
344 |
rgb_image: str,
|
requirements.txt
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
h5py==3.9.0
|
2 |
imageio==2.31.3
|
3 |
-
open3d==0.17.0
|
4 |
opencv-python==4.8.0.76
|
5 |
pandas==2.1.0
|
6 |
pycocotools==2.0.7
|
@@ -8,5 +7,8 @@ scikit-image==0.21.0
|
|
8 |
scikit-learn==1.3.0
|
9 |
scipy==1.11.2
|
10 |
timm==0.9.7
|
|
|
|
|
|
|
11 |
detectron2 @ git+https://github.com/facebookresearch/detectron2.git@fc9c33b1f6e5d4c37bbb46dde19af41afc1ddb2a
|
12 |
-e mask2former/modeling/pixel_decoder/ops/
|
|
|
1 |
h5py==3.9.0
|
2 |
imageio==2.31.3
|
|
|
3 |
opencv-python==4.8.0.76
|
4 |
pandas==2.1.0
|
5 |
pycocotools==2.0.7
|
|
|
7 |
scikit-learn==1.3.0
|
8 |
scipy==1.11.2
|
9 |
timm==0.9.7
|
10 |
+
black==23.9.1
|
11 |
+
gradio==3.44.3
|
12 |
+
huggingface-hub==0.17.2
|
13 |
detectron2 @ git+https://github.com/facebookresearch/detectron2.git@fc9c33b1f6e5d4c37bbb46dde19af41afc1ddb2a
|
14 |
-e mask2former/modeling/pixel_decoder/ops/
|
visualization.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from copy import deepcopy
|
3 |
+
|
4 |
+
import imageio
|
5 |
+
import open3d as o3d
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image, ImageChops
|
8 |
+
|
9 |
+
POINT_COLOR = [1, 0, 0] # red for demonstration
|
10 |
+
ARROW_COLOR = [0, 1, 0] # green
|
11 |
+
IMAGE_EXTENSIONS = (".png", ".jpg", ".jpeg")
|
12 |
+
|
13 |
+
|
14 |
+
def generate_rotation_visualization(
|
15 |
+
pcd: o3d.geometry.PointCloud,
|
16 |
+
axis_arrow: o3d.geometry.TriangleMesh,
|
17 |
+
mask: np.ndarray,
|
18 |
+
axis_vector: np.ndarray,
|
19 |
+
origin: np.ndarray,
|
20 |
+
range_min: float,
|
21 |
+
range_max: float,
|
22 |
+
num_samples: int,
|
23 |
+
output_dir: str,
|
24 |
+
) -> None:
|
25 |
+
"""
|
26 |
+
Generate visualization files for a rotation motion of a part.
|
27 |
+
|
28 |
+
:param pcd: point cloud object representing 2D image input (RGBD) as a point cloud
|
29 |
+
:param axis_arrow: mesh object representing axis arrow of rotation to be rendered in visualization
|
30 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be rotated in the image
|
31 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of rotation
|
32 |
+
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of rotation
|
33 |
+
:param range_min: float representing the minimum range of motion in radians
|
34 |
+
:param range_max: float representing the maximum range of motion in radians
|
35 |
+
:param num_samples: number of sample states to visualize in between range_min and range_max of motion
|
36 |
+
:param output_dir: string path to directory in which to save visualization output
|
37 |
+
"""
|
38 |
+
angle_in_radians = np.linspace(range_min, range_max, num_samples)
|
39 |
+
angles_in_degrees = angle_in_radians * 180 / np.pi
|
40 |
+
|
41 |
+
for idx, angle_in_degrees in enumerate(angles_in_degrees):
|
42 |
+
# Make a copy of your original point cloud and arrow for each rotation
|
43 |
+
rotated_pcd = deepcopy(pcd)
|
44 |
+
rotated_arrow = deepcopy(axis_arrow)
|
45 |
+
|
46 |
+
angle_rad = np.radians(angle_in_degrees)
|
47 |
+
rotated_pcd = rotate_part(rotated_pcd, mask, axis_vector, origin, angle_rad)
|
48 |
+
|
49 |
+
# Create a Visualizer object for each rotation
|
50 |
+
vis = o3d.visualization.Visualizer()
|
51 |
+
vis.create_window(visible=False)
|
52 |
+
|
53 |
+
# Add the rotated geometries
|
54 |
+
vis.add_geometry(rotated_pcd)
|
55 |
+
vis.add_geometry(rotated_arrow)
|
56 |
+
|
57 |
+
# Apply the additional rotation around x-axis if desired
|
58 |
+
angle_x = np.pi * 5.5 / 5 # 198 degrees
|
59 |
+
rotation_matrix = o3d.geometry.get_rotation_matrix_from_axis_angle(np.asarray([1, 0, 0]) * angle_x)
|
60 |
+
rotated_pcd.rotate(rotation_matrix, center=rotated_pcd.get_center())
|
61 |
+
rotated_arrow.rotate(rotation_matrix, center=rotated_pcd.get_center())
|
62 |
+
|
63 |
+
# Capture and save the image
|
64 |
+
output_filename = f"{output_dir}/{idx}.png"
|
65 |
+
vis.capture_screen_image(output_filename, do_render=True)
|
66 |
+
vis.destroy_window()
|
67 |
+
|
68 |
+
|
69 |
+
def generate_translation_visualization(
|
70 |
+
pcd: o3d.geometry.PointCloud,
|
71 |
+
axis_arrow: o3d.geometry.TriangleMesh,
|
72 |
+
mask: np.ndarray,
|
73 |
+
end: np.ndarray,
|
74 |
+
range_min: float,
|
75 |
+
range_max: float,
|
76 |
+
num_samples: int,
|
77 |
+
output_dir: str,
|
78 |
+
) -> None:
|
79 |
+
"""
|
80 |
+
Generate visualization files for a translation motion of a part.
|
81 |
+
|
82 |
+
:param pcd: point cloud object representing 2D image input (RGBD) as a point cloud
|
83 |
+
:param axis_arrow: mesh object representing axis arrow of translation to be rendered in visualization
|
84 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be translated in the image
|
85 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of translation
|
86 |
+
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of translation
|
87 |
+
:param range_min: float representing the minimum range of motion
|
88 |
+
:param range_max: float representing the maximum range of motion
|
89 |
+
:param num_samples: number of sample states to visualize in between range_min and range_max of motion
|
90 |
+
:param output_dir: string path to directory in which to save visualization output
|
91 |
+
"""
|
92 |
+
translate_distances = np.linspace(range_min, range_max, num_samples)
|
93 |
+
for idx, translate_distance in enumerate(translate_distances):
|
94 |
+
translated_pcd = deepcopy(pcd)
|
95 |
+
translated_arrow = deepcopy(axis_arrow)
|
96 |
+
|
97 |
+
translated_pcd = translate_part(translated_pcd, mask, end, translate_distance.item())
|
98 |
+
|
99 |
+
# Create a Visualizer object for each rotation
|
100 |
+
vis = o3d.visualization.Visualizer()
|
101 |
+
vis.create_window(visible=False)
|
102 |
+
|
103 |
+
# Add the translated geometries
|
104 |
+
vis.add_geometry(translated_pcd)
|
105 |
+
vis.add_geometry(translated_arrow)
|
106 |
+
|
107 |
+
# Apply the additional rotation around x-axis if desired
|
108 |
+
# TODO: not sure why we need this rotation for the translation, and when it would be desired
|
109 |
+
angle_x = np.pi * 5.5 / 5 # 198 degrees
|
110 |
+
R = o3d.geometry.get_rotation_matrix_from_axis_angle(np.asarray([1, 0, 0]) * angle_x)
|
111 |
+
translated_pcd.rotate(R, center=translated_pcd.get_center())
|
112 |
+
translated_arrow.rotate(R, center=translated_pcd.get_center())
|
113 |
+
|
114 |
+
# Capture and save the image
|
115 |
+
output_filename = f"{output_dir}/{idx}.png"
|
116 |
+
vis.capture_screen_image(output_filename, do_render=True)
|
117 |
+
vis.destroy_window()
|
118 |
+
|
119 |
+
|
120 |
+
def get_rotation_matrix_from_vectors(vec1: np.ndarray, vec2: np.ndarray) -> np.ndarray:
|
121 |
+
"""
|
122 |
+
Find the rotation matrix that aligns vec1 to vec2
|
123 |
+
|
124 |
+
:param vec1: A 3d "source" vector
|
125 |
+
:param vec2: A 3d "destination" vector
|
126 |
+
:return: A transform matrix (3x3) which when applied to vec1, aligns it with vec2.
|
127 |
+
"""
|
128 |
+
a, b = (vec1 / np.linalg.norm(vec1)).reshape(3), (vec2 / np.linalg.norm(vec2)).reshape(3)
|
129 |
+
v = np.cross(a, b)
|
130 |
+
c = np.dot(a, b)
|
131 |
+
s = np.linalg.norm(v)
|
132 |
+
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
|
133 |
+
rotation_matrix = np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s**2))
|
134 |
+
return rotation_matrix
|
135 |
+
|
136 |
+
|
137 |
+
def draw_line(start_point: np.ndarray, end_point: np.ndarray) -> o3d.geometry.TriangleMesh:
|
138 |
+
"""
|
139 |
+
Generate 3D mesh representing axis from start_point to end_point.
|
140 |
+
|
141 |
+
:param start_point: np.ndarray of dimensions (3, ) representing the start point of the axis
|
142 |
+
:param end_point: np.ndarray of dimensions (3, ) representing the end point of the axis
|
143 |
+
:return: mesh object representing axis from start to end
|
144 |
+
"""
|
145 |
+
# Compute direction vector and normalize it
|
146 |
+
direction_vector = end_point - start_point
|
147 |
+
normalized_vector = direction_vector / np.linalg.norm(direction_vector)
|
148 |
+
|
149 |
+
# Compute the rotation matrix to align the Z-axis with the desired direction
|
150 |
+
target_vector = np.array([0, 0, 1])
|
151 |
+
rot_mat = get_rotation_matrix_from_vectors(target_vector, normalized_vector)
|
152 |
+
|
153 |
+
# Create the cylinder (shaft of the arrow)
|
154 |
+
cylinder_length = 0.9 # 90% of the total arrow length, you can adjust as needed
|
155 |
+
cylinder_radius = 0.01 # Adjust the thickness of the arrow shaft
|
156 |
+
cylinder = o3d.geometry.TriangleMesh.create_cylinder(radius=cylinder_radius, height=cylinder_length)
|
157 |
+
|
158 |
+
# Move base of cylinder to origin, rotate, then translate to start_point
|
159 |
+
cylinder.translate([0, 0, 0])
|
160 |
+
cylinder.rotate(rot_mat, center=[0, 0, 0])
|
161 |
+
cylinder.translate(start_point)
|
162 |
+
|
163 |
+
# Create the cone (head of the arrow)
|
164 |
+
cone_height = 0.1 # 10% of the total arrow length, adjust as needed
|
165 |
+
cone_radius = 0.03 # Adjust the size of the arrowhead
|
166 |
+
cone = o3d.geometry.TriangleMesh.create_cone(radius=cone_radius, height=cone_height)
|
167 |
+
|
168 |
+
# Move base of cone to origin, rotate, then translate to end of cylinder
|
169 |
+
cone.translate([-0, 0, 0])
|
170 |
+
cone.rotate(rot_mat, center=[0, 0, 0])
|
171 |
+
cone.translate(start_point + normalized_vector * 0.4)
|
172 |
+
|
173 |
+
arrow = cylinder + cone
|
174 |
+
return arrow
|
175 |
+
|
176 |
+
|
177 |
+
def rotate_part(
|
178 |
+
pcd: o3d.geometry.PointCloud, mask: np.ndarray, axis_vector: np.ndarray, origin: np.ndarray, angle_rad: float
|
179 |
+
) -> o3d.geometry.PointCloud:
|
180 |
+
"""
|
181 |
+
Generate rotated point cloud of mask based on provided angle around axis.
|
182 |
+
|
183 |
+
:param pcd: point cloud object representing points of image
|
184 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be rotated in the image
|
185 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of rotation
|
186 |
+
:param origin: np.array of dimensions (3, ) representing the origin point of the axis of rotation
|
187 |
+
:param angle_rad: angle in radians to rotate mask part
|
188 |
+
:return: point cloud object after rotation of masked part
|
189 |
+
"""
|
190 |
+
# Get the coordinates of the point cloud as a numpy array
|
191 |
+
points_np = np.asarray(pcd.points)
|
192 |
+
|
193 |
+
# Convert point cloud colors to numpy array for easier manipulation
|
194 |
+
colors_np = np.asarray(pcd.colors)
|
195 |
+
|
196 |
+
# Create skew-symmetric matrix from end
|
197 |
+
K = np.array(
|
198 |
+
[
|
199 |
+
[0, -axis_vector[2], axis_vector[1]],
|
200 |
+
[axis_vector[2], 0, -axis_vector[0]],
|
201 |
+
[-axis_vector[1], axis_vector[0], 0],
|
202 |
+
]
|
203 |
+
)
|
204 |
+
|
205 |
+
# Compute rotation matrix using Rodrigues' formula
|
206 |
+
R = np.eye(3) + np.sin(angle_rad) * K + (1 - np.cos(angle_rad)) * np.dot(K, K)
|
207 |
+
|
208 |
+
# Iterate over the mask and rotate the points corresponding to the object pixels
|
209 |
+
for i in range(mask.shape[0]):
|
210 |
+
for j in range(mask.shape[1]):
|
211 |
+
if mask[i, j] > 0: # This condition checks if the pixel belongs to the object
|
212 |
+
point_index = i * mask.shape[1] + j
|
213 |
+
|
214 |
+
# Translate the point such that the rotation origin is at the world origin
|
215 |
+
translated_point = points_np[point_index] - origin
|
216 |
+
|
217 |
+
# Rotate the translated point
|
218 |
+
rotated_point = np.dot(R, translated_point)
|
219 |
+
|
220 |
+
# Translate the point back
|
221 |
+
points_np[point_index] = rotated_point + origin
|
222 |
+
|
223 |
+
colors_np[point_index] = POINT_COLOR
|
224 |
+
|
225 |
+
# Update the point cloud's coordinates
|
226 |
+
pcd.points = o3d.utility.Vector3dVector(points_np)
|
227 |
+
|
228 |
+
# Update point cloud colors
|
229 |
+
pcd.colors = o3d.utility.Vector3dVector(colors_np)
|
230 |
+
|
231 |
+
return pcd
|
232 |
+
|
233 |
+
|
234 |
+
def translate_part(pcd, mask, axis_vector, distance):
|
235 |
+
"""
|
236 |
+
Generate translated point cloud of mask based on provided angle around axis.
|
237 |
+
|
238 |
+
:param pcd: point cloud object representing points of image
|
239 |
+
:param mask: mask np.array of dimensions (height, width) representing the part to be translated in the image
|
240 |
+
:param axis_vector: np.array of dimensions (3, ) representing the vector of the axis of translation
|
241 |
+
:param distance: distance within coordinate system to translate mask part
|
242 |
+
:return: point cloud object after translation of masked part
|
243 |
+
"""
|
244 |
+
normalized_vector = axis_vector / np.linalg.norm(axis_vector)
|
245 |
+
translation_vector = normalized_vector * distance
|
246 |
+
|
247 |
+
# Convert point cloud colors to numpy array for easier manipulation
|
248 |
+
colors_np = np.asarray(pcd.colors)
|
249 |
+
|
250 |
+
# Get the coordinates of the point cloud as a numpy array
|
251 |
+
points_np = np.asarray(pcd.points)
|
252 |
+
|
253 |
+
# Iterate over the mask and assign the color to the points corresponding to the object pixels
|
254 |
+
for i in range(mask.shape[0]):
|
255 |
+
for j in range(mask.shape[1]):
|
256 |
+
if mask[i, j] > 0: # This condition checks if the pixel belongs to the object
|
257 |
+
point_index = i * mask.shape[1] + j
|
258 |
+
colors_np[point_index] = POINT_COLOR
|
259 |
+
points_np[point_index] += translation_vector
|
260 |
+
|
261 |
+
# Update point cloud colors
|
262 |
+
pcd.colors = o3d.utility.Vector3dVector(colors_np)
|
263 |
+
|
264 |
+
# Update the point cloud's coordinates
|
265 |
+
pcd.points = o3d.utility.Vector3dVector(points_np)
|
266 |
+
|
267 |
+
return pcd
|
268 |
+
|
269 |
+
|
270 |
+
def batch_trim(images_path: str, save_path: str, identical: bool = False) -> None:
|
271 |
+
"""
|
272 |
+
Trim white spaces from all images in the given path and save new images to folder.
|
273 |
+
|
274 |
+
:param images_path: local path to folder containing all images. Images must have the extension ".png", ".jpg", or
|
275 |
+
".jpeg".
|
276 |
+
:param save_path: local path to folder in which to save trimmed images
|
277 |
+
:param identical: if True, will apply same crop to all images, else each image will have its whitespace trimmed
|
278 |
+
independently. Note that in the latter case, each image may have a slightly different size.
|
279 |
+
"""
|
280 |
+
|
281 |
+
def get_trim(im):
|
282 |
+
"""Trim whitespace from an image and return the cropped image."""
|
283 |
+
bg = Image.new(im.mode, im.size, im.getpixel((0, 0)))
|
284 |
+
diff = ImageChops.difference(im, bg)
|
285 |
+
diff = ImageChops.add(diff, diff, 2.0, -100)
|
286 |
+
bbox = diff.getbbox()
|
287 |
+
return bbox
|
288 |
+
|
289 |
+
if identical: #
|
290 |
+
images = []
|
291 |
+
optimal_box = None
|
292 |
+
|
293 |
+
# load all images
|
294 |
+
for image_file in sorted(os.listdir(images_path)):
|
295 |
+
if image_file.endswith(IMAGE_EXTENSIONS):
|
296 |
+
image_path = os.path.join(images_path, image_file)
|
297 |
+
images.append(Image.open(image_path))
|
298 |
+
|
299 |
+
# find optimal box size
|
300 |
+
for im in images:
|
301 |
+
bbox = get_trim(im)
|
302 |
+
if bbox is None:
|
303 |
+
bbox = (0, 0, im.size[0], im.size[1]) # bound entire image
|
304 |
+
|
305 |
+
if optimal_box is None:
|
306 |
+
optimal_box = bbox
|
307 |
+
else:
|
308 |
+
optimal_box = (
|
309 |
+
min(optimal_box[0], bbox[0]),
|
310 |
+
min(optimal_box[1], bbox[1]),
|
311 |
+
max(optimal_box[2], bbox[2]),
|
312 |
+
max(optimal_box[3], bbox[3]),
|
313 |
+
)
|
314 |
+
|
315 |
+
# apply cropping, if optimal box was found
|
316 |
+
for idx, im in enumerate(images):
|
317 |
+
im.crop(optimal_box)
|
318 |
+
im.save(os.path.join(save_path, f"{idx}.png"))
|
319 |
+
im.close()
|
320 |
+
|
321 |
+
else: # trim each image separately
|
322 |
+
for image_file in os.listdir(images_path):
|
323 |
+
if image_file.endswith(IMAGE_EXTENSIONS):
|
324 |
+
image_path = os.path.join(images_path, image_file)
|
325 |
+
with Image.open(image_path) as im:
|
326 |
+
bbox = get_trim(im)
|
327 |
+
trimmed = im.crop(bbox) if bbox else im
|
328 |
+
trimmed.save(os.path.join(save_path, image_file))
|
329 |
+
|
330 |
+
|
331 |
+
def create_gif(image_folder_path: str, num_samples: int, gif_filename: str = "output.gif") -> None:
|
332 |
+
"""
|
333 |
+
Create gif out of folder of images and save to file.
|
334 |
+
|
335 |
+
:param image_folder_path: path to folder containing images (non-recursive). Assumes images are named as {i}.png for
|
336 |
+
each of i from 0 to num_samples.
|
337 |
+
:param num_samples: number of sampled images to compile into gif.
|
338 |
+
:param gif_filename: filename for gif, defaults to "output.gif"
|
339 |
+
"""
|
340 |
+
# Generate a list of image filenames (assuming the images are saved as 0.png, 1.png, etc.)
|
341 |
+
image_files = [f"{image_folder_path}/{i}.png" for i in range(num_samples)]
|
342 |
+
|
343 |
+
# Read the images using imageio
|
344 |
+
images = [imageio.imread(image_file) for image_file in image_files]
|
345 |
+
assert all(
|
346 |
+
images[0].shape == im.shape for im in images
|
347 |
+
), f"Found some images with a different shape: {[im.shape for im in images]}"
|
348 |
+
|
349 |
+
# Save images as a gif
|
350 |
+
gif_output_path = f"{image_folder_path}/{gif_filename}"
|
351 |
+
imageio.mimsave(gif_output_path, images, duration=0.1)
|
352 |
+
|
353 |
+
return
|