Spaces:
Running
Running
model support from hf
Browse files
app.py
CHANGED
@@ -19,9 +19,10 @@ NUM_PROCESSES = 1
|
|
19 |
CROP = False
|
20 |
SCORE_THRESHOLD = 0.8
|
21 |
MAX_PARTS = 5 # TODO: we can replace this by having a slider and a single image visualization component rather than multiple components
|
|
|
22 |
ARGS = SimpleNamespace(
|
23 |
config_file="configs/coco/instance-segmentation/swin/opd_v1_real.yaml",
|
24 |
-
model=
|
25 |
input_format="RGB",
|
26 |
output=".output",
|
27 |
cpu=True,
|
@@ -88,8 +89,7 @@ def predict(rgb_image: str, depth_image: str, intrinsic: np.ndarray, num_samples
|
|
88 |
return [None] * 5
|
89 |
|
90 |
# run model
|
91 |
-
|
92 |
-
ARGS.model = weights_path
|
93 |
cfg = setup_cfg(ARGS)
|
94 |
engine.launch(
|
95 |
main,
|
|
|
19 |
CROP = False
|
20 |
SCORE_THRESHOLD = 0.8
|
21 |
MAX_PARTS = 5 # TODO: we can replace this by having a slider and a single image visualization component rather than multiple components
|
22 |
+
HF_MODEL_PATH = {"repo_id": "3dlg-hcvc/opdmulti-motion-state-rgb-model", "filename": "pytorch_model.pth"}
|
23 |
ARGS = SimpleNamespace(
|
24 |
config_file="configs/coco/instance-segmentation/swin/opd_v1_real.yaml",
|
25 |
+
model=None,
|
26 |
input_format="RGB",
|
27 |
output=".output",
|
28 |
cpu=True,
|
|
|
89 |
return [None] * 5
|
90 |
|
91 |
# run model
|
92 |
+
ARGS.model = hf_hub_download(repo_id=HF_MODEL_PATH["repo_id"], filename=HF_MODEL_PATH["filename"])
|
|
|
93 |
cfg = setup_cfg(ARGS)
|
94 |
engine.launch(
|
95 |
main,
|