# app.py import streamlit as st import torch from src.model import TransformerModel from src.utils import load_vocab, tokenize import time import random import os # Configuration MODEL_PATH = 'models/3ed0k4_model_epoch9.pth' # Update this path based on the latest model VOCAB_PATH = 'vocab.json' EMBED_SIZE = 256 NUM_HEADS = 8 HIDDEN_DIM = 512 NUM_LAYERS = 4 DROPOUT = 0.1 MAX_LENGTH = 100 # Maximum tokens to generate # Title and Description st.title("3ed0k4 NLP Text Generation Model 🚀") st.write("Enter a prompt, and the model will generate text based on your input. It will take 1 to 10 seconds to respond to simulate 'thinking'.") # Load vocabulary @st.cache_resource def load_resources(): vocab = load_vocab(VOCAB_PATH) return vocab vocab = load_resources() vocab_size = len(vocab) # Initialize model @st.cache_resource def load_model(): model = TransformerModel( vocab_size=vocab_size, embed_size=EMBED_SIZE, num_heads=NUM_HEADS, hidden_dim=HIDDEN_DIM, num_layers=NUM_LAYERS, dropout=DROPOUT ) if not os.path.exists(MODEL_PATH): st.error(f"Model file not found at {MODEL_PATH}. Please ensure the model is trained and the path is correct.") return None model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device('cpu'))) model.eval() return model model = load_model() def generate_text(prompt, max_length=MAX_LENGTH): tokens = tokenize(prompt) numericalized = [vocab.get(token, vocab['']) for token in tokens] input_seq = torch.tensor(numericalized, dtype=torch.long).unsqueeze(0) # Batch size 1 generated = numericalized.copy() with torch.no_grad(): for _ in range(max_length): src_mask = model.generate_square_subsequent_mask(input_seq.size(1)).to(input_seq.device) outputs = model(input_seq, src_mask) next_token_logits = outputs[0, -1, :] next_token = torch.argmax(next_token_logits).item() if next_token == vocab.get('', 0): break generated.append(next_token) input_seq = torch.tensor(generated, dtype=torch.long).unsqueeze(0) # Convert numerical tokens back to words inv_vocab = {idx: word for word, idx in vocab.items()} generated_tokens = [inv_vocab.get(tok, '') for tok in generated] return ' '.join(generated_tokens) # User Inputs prompt = st.text_input("Enter your prompt:", "") delay = st.slider("Select thinking delay (seconds):", min_value=1, max_value=10, value=3) if st.button("Generate"): if not model: st.error("Model is not loaded. Please check the model path.") elif prompt.strip() == "": st.warning("Please enter a prompt to generate text.") else: with st.spinner("Thinking..."): time.sleep(delay) response = generate_text(prompt) st.success("Here's the generated text:") st.write(response)