# import gradio as gr # from langchain.prompts import PromptTemplate # from langchain_community.llms import CTransformers # from langchain_community.vectorstores import Pinecone as LangchainPinecone # from langchain.chains import RetrievalQA # from pinecone import Pinecone # from dotenv import load_dotenv # import os # # Load environment variables # load_dotenv() # PINECONE_API_KEY = os.getenv('PINECONE_API_KEY') # index_name = "apple-chatbot" # class AppleChatbot: # def __init__(self, k=2, max_tokens=512, temperature=0.8): # self.k = k # self.max_tokens = max_tokens # self.temperature = temperature # self.qa_chain = self.initialize_chatbot() # def download_hf_embeddings(self): # from langchain_community.embeddings import HuggingFaceEmbeddings # return HuggingFaceEmbeddings() # def initialize_chatbot(self): # embeddings = self.download_hf_embeddings() # model_path = "TheBloke/Llama-2-7B-Chat-GGML" # llm = CTransformers( # model=model_path, # model_type="llama", # config={ # 'max_new_tokens': self.max_tokens, # 'temperature': self.temperature # } # ) # # Initialize pinecone # pc = Pinecone(api_key=PINECONE_API_KEY) # index = pc.Index(index_name) # # Use the same prompt template from your original application # prompt_template = """ # You are an expert in apple cultivation and orchard management. Use the following pieces of context to answer the question at the end. # If you don't know the answer, just say that you don't know, don't try to make up an answer. # {context} # Question: {question} # Answer:""" # PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) # chain_type_kwargs = {"prompt": PROMPT} # docsearch = LangchainPinecone(index, embeddings.embed_query, "text") # qa = RetrievalQA.from_chain_type( # llm=llm, # chain_type="stuff", # retriever=docsearch.as_retriever(search_kwargs={'k': self.k}), # return_source_documents=True, # chain_type_kwargs=chain_type_kwargs # ) # return qa # def get_response(self, question): # try: # result = self.qa_chain({"query": question}) # return result["result"] # except Exception as e: # return f"Error: {str(e)}" # # Initialize the chatbot # chatbot = AppleChatbot() # # Define the Gradio interface # def respond(message, history): # response = chatbot.get_response(message) # return response # # Create the Gradio interface # demo = gr.ChatInterface( # respond, # chatbot=gr.Chatbot(height=600), # textbox=gr.Textbox(placeholder="Ask me anything about apple cultivation...", container=False), # title="Apple Orchard Expert Chatbot", # description="Ask questions about apple cultivation and orchard management. Built with Langchain, Pinecone, and Llama-2.", # theme=gr.themes.Soft(), # examples=[ # "What are the ideal conditions for growing apples?", # "How do I prevent common apple diseases?", # "What is the best time to harvest apples?", # ], # cache_examples=False, # ) # # Launch the interface # if __name__ == "__main__": # demo.queue() # Enable queuing # demo.launch( # server_name="0.0.0.0", # server_port=7860, # share=True # ) import gradio as gr from langchain.prompts import PromptTemplate from langchain_community.vectorstores import Pinecone as LangchainPinecone from langchain.chains import RetrievalQA from pinecone import Pinecone from dotenv import load_dotenv import os import google.generativeai as genai import logging # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Load environment variables load_dotenv() PINECONE_API_KEY = os.getenv('PINECONE_API_KEY') GEMINI_API_KEY = os.getenv('GEMINI_API_KEY') index_name = "apple-chatbot" class AppleChatbot: def __init__(self, k=2, max_tokens=512, temperature=0.8): self.k = k self.max_tokens = max_tokens self.temperature = temperature self.qa_chain = self.initialize_chatbot() def download_hf_embeddings(self): from langchain_community.embeddings import HuggingFaceEmbeddings return HuggingFaceEmbeddings() def initialize_chatbot(self): embeddings = self.download_hf_embeddings() # Initialize Gemini genai.configure(api_key=GEMINI_API_KEY) llm = genai.GenerativeModel('gemini-pro') # Initialize Pinecone pc = Pinecone(api_key=PINECONE_API_KEY) index = pc.Index(index_name) # Use the same prompt template from your original application prompt_template = """ You are an expert in apple cultivation and orchard management. Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. {context} Question: {question} Answer:""" PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain_type_kwargs = {"prompt": PROMPT} docsearch = LangchainPinecone(index, embeddings.embed_query, "text") qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=docsearch.as_retriever(search_kwargs={'k': self.k}), return_source_documents=True, chain_type_kwargs=chain_type_kwargs ) return qa def get_response(self, question): try: result = self.qa_chain({"query": question}) return result["result"] except Exception as e: return f"Error: {str(e)}" # Initialize the chatbot chatbot = AppleChatbot() # Define the Gradio interface def respond(message, history): response = chatbot.get_response(message) return response # Create the Gradio interface demo = gr.ChatInterface( respond, chatbot=gr.Chatbot(height=600), textbox=gr.Textbox(placeholder="Ask me anything about apple cultivation...", container=False), title="Apple Orchard Expert Chatbot", description="Ask questions about apple cultivation and orchard management. Built with Langchain, Pinecone, and Gemini.", theme=gr.themes.Soft(), examples=[ "What are the ideal conditions for growing apples?", "How do I prevent common apple diseases?", "What is the best time to harvest apples?", ], cache_examples=False, ) # Launch the interface if __name__ == "__main__": demo.queue() # Enable queuing demo.launch( server_name="0.0.0.0", server_port=7860, share=True )