52Hz commited on
Commit
a604a4f
1 Parent(s): 6f9115d

Create SRMNet.py

Browse files
Files changed (1) hide show
  1. model_arch/SRMNet.py +225 -0
model_arch/SRMNet.py ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ ##---------- Basic Layers ----------
5
+ def conv3x3(in_chn, out_chn, bias=True):
6
+ layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias)
7
+ return layer
8
+
9
+ def conv(in_channels, out_channels, kernel_size, bias=False, stride=1):
10
+ return nn.Conv2d(
11
+ in_channels, out_channels, kernel_size,
12
+ padding=(kernel_size // 2), bias=bias, stride=stride)
13
+
14
+ def bili_resize(factor):
15
+ return nn.Upsample(scale_factor=factor, mode='bilinear', align_corners=False)
16
+
17
+ ##---------- Basic Blocks ----------
18
+
19
+ class UNetConvBlock(nn.Module):
20
+ def __init__(self, in_size, out_size, downsample):
21
+ super(UNetConvBlock, self).__init__()
22
+ self.downsample = downsample
23
+ self.block = SK_RDB(in_channels=in_size, growth_rate=out_size, num_layers=3)
24
+ if downsample:
25
+ self.downsample = PS_down(out_size, out_size, downscale=2)
26
+
27
+ def forward(self, x):
28
+ out = self.block(x)
29
+ if self.downsample:
30
+ out_down = self.downsample(out)
31
+ return out_down, out
32
+ else:
33
+ return out
34
+
35
+ class UNetUpBlock(nn.Module):
36
+ def __init__(self, in_size, out_size):
37
+ super(UNetUpBlock, self).__init__()
38
+ # self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2, bias=True)
39
+ self.up = PS_up(in_size, out_size, upscale=2)
40
+ self.conv_block = UNetConvBlock(in_size, out_size, False)
41
+
42
+ def forward(self, x, bridge):
43
+ up = self.up(x)
44
+ out = torch.cat([up, bridge], dim=1)
45
+ out = self.conv_block(out)
46
+ return out
47
+
48
+ ##---------- Resizing Modules (Pixel(Un)Shuffle) ----------
49
+ class PS_down(nn.Module):
50
+ def __init__(self, in_size, out_size, downscale):
51
+ super(PS_down, self).__init__()
52
+ self.UnPS = nn.PixelUnshuffle(downscale)
53
+ self.conv1 = nn.Conv2d((downscale**2) * in_size, out_size, 1, 1, 0)
54
+
55
+ def forward(self, x):
56
+ x = self.UnPS(x) # h/2, w/2, 4*c
57
+ x = self.conv1(x)
58
+ return x
59
+
60
+ class PS_up(nn.Module):
61
+ def __init__(self, in_size, out_size, upscale):
62
+ super(PS_up, self).__init__()
63
+
64
+ self.PS = nn.PixelShuffle(upscale)
65
+ self.conv1 = nn.Conv2d(in_size//(upscale**2), out_size, 1, 1, 0)
66
+
67
+ def forward(self, x):
68
+ x = self.PS(x) # h/2, w/2, 4*c
69
+ x = self.conv1(x)
70
+ return x
71
+
72
+ ##---------- Selective Kernel Feature Fusion (SKFF) ----------
73
+ class SKFF(nn.Module):
74
+ def __init__(self, in_channels, height=3, reduction=8, bias=False):
75
+ super(SKFF, self).__init__()
76
+
77
+ self.height = height
78
+ d = max(int(in_channels / reduction), 4)
79
+
80
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
81
+ self.conv_du = nn.Sequential(nn.Conv2d(in_channels, d, 1, padding=0, bias=bias), nn.PReLU())
82
+
83
+ self.fcs = nn.ModuleList([])
84
+ for i in range(self.height):
85
+ self.fcs.append(nn.Conv2d(d, in_channels, kernel_size=1, stride=1, bias=bias))
86
+
87
+ self.softmax = nn.Softmax(dim=1)
88
+
89
+ def forward(self, inp_feats):
90
+ batch_size, n_feats, H, W = inp_feats[1].shape
91
+
92
+ inp_feats = torch.cat(inp_feats, dim=1)
93
+ inp_feats = inp_feats.view(batch_size, self.height, n_feats, inp_feats.shape[2], inp_feats.shape[3])
94
+
95
+ feats_U = torch.sum(inp_feats, dim=1)
96
+ feats_S = self.avg_pool(feats_U)
97
+ feats_Z = self.conv_du(feats_S)
98
+
99
+ attention_vectors = [fc(feats_Z) for fc in self.fcs]
100
+ attention_vectors = torch.cat(attention_vectors, dim=1)
101
+ attention_vectors = attention_vectors.view(batch_size, self.height, n_feats, 1, 1)
102
+
103
+ attention_vectors = self.softmax(attention_vectors)
104
+ feats_V = torch.sum(inp_feats * attention_vectors, dim=1)
105
+
106
+ return feats_V
107
+
108
+ ##---------- Dense Block ----------
109
+ class DenseLayer(nn.Module):
110
+ def __init__(self, in_channels, out_channels, I):
111
+ super(DenseLayer, self).__init__()
112
+ self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=3 // 2)
113
+ self.relu = nn.ReLU(inplace=True)
114
+ self.sk = SKFF(out_channels, height=2, reduction=8, bias=False)
115
+
116
+ def forward(self, x):
117
+ x1 = self.relu(self.conv(x))
118
+ # output = torch.cat([x, x1], 1) # -> RDB
119
+ output = self.sk((x, x1))
120
+ return output
121
+
122
+ ##---------- Selective Kernel Residual Dense Block (SK-RDB) ----------
123
+ class SK_RDB(nn.Module):
124
+ def __init__(self, in_channels, growth_rate, num_layers):
125
+ super(SK_RDB, self).__init__()
126
+ self.identity = nn.Conv2d(in_channels, growth_rate, 1, 1, 0)
127
+ self.layers = nn.Sequential(
128
+ *[DenseLayer(in_channels, in_channels, I=i) for i in range(num_layers)]
129
+ )
130
+ self.lff = nn.Conv2d(in_channels, growth_rate, kernel_size=1)
131
+
132
+ def forward(self, x):
133
+ res = self.identity(x)
134
+ x = self.layers(x)
135
+ x = self.lff(x)
136
+ return res + x
137
+
138
+ ##---------- testNet ----------
139
+ class SRMNet(nn.Module):
140
+ def __init__(self, in_chn=3, wf=96, depth=4):
141
+ super(SRMNet, self).__init__()
142
+ self.depth = depth
143
+ self.down_path = nn.ModuleList()
144
+ self.bili_down = bili_resize(0.5)
145
+ self.conv_01 = nn.Conv2d(in_chn, wf, 3, 1, 1)
146
+
147
+ # encoder of UNet-64
148
+ prev_channels = 0
149
+ for i in range(depth): # 0,1,2,3
150
+ downsample = True if (i + 1) < depth else False
151
+ self.down_path.append(UNetConvBlock(prev_channels + wf, (2 ** i) * wf, downsample))
152
+ prev_channels = (2 ** i) * wf
153
+
154
+ # decoder of UNet-64
155
+ self.up_path = nn.ModuleList()
156
+ self.skip_conv = nn.ModuleList()
157
+ self.conv_up = nn.ModuleList()
158
+ self.bottom_conv = nn.Conv2d(prev_channels, wf, 3, 1, 1)
159
+ self.bottom_up = bili_resize(2 ** (depth-1))
160
+
161
+ for i in reversed(range(depth - 1)):
162
+ self.up_path.append(UNetUpBlock(prev_channels, (2 ** i) * wf))
163
+ self.skip_conv.append(nn.Conv2d((2 ** i) * wf, (2 ** i) * wf, 3, 1, 1))
164
+ self.conv_up.append(nn.Sequential(*[bili_resize(2 ** i), nn.Conv2d((2 ** i) * wf, wf, 3, 1, 1)]))
165
+ # *[nn.Conv2d((2 ** i) * wf, wf, 3, 1, 1), bili_resize(2 ** i)])
166
+ prev_channels = (2 ** i) * wf
167
+
168
+ self.final_ff = SKFF(in_channels=wf, height=depth)
169
+ self.last = conv3x3(prev_channels, in_chn, bias=True)
170
+
171
+ def forward(self, x):
172
+ img = x
173
+ scale_img = img
174
+
175
+ ##### shallow conv #####
176
+ x1 = self.conv_01(img)
177
+ encs = []
178
+ ######## UNet-64 ########
179
+ # Down-path (Encoder)
180
+ for i, down in enumerate(self.down_path):
181
+ if i == 0: # top layer
182
+ x1, x1_up = down(x1)
183
+ encs.append(x1_up)
184
+ elif (i + 1) < self.depth: # middle layer
185
+ scale_img = self.bili_down(scale_img)
186
+ left_bar = self.conv_01(scale_img)
187
+ x1 = torch.cat([x1, left_bar], dim=1)
188
+ x1, x1_up = down(x1)
189
+ encs.append(x1_up)
190
+ else: # lowest layer
191
+ scale_img = self.bili_down(scale_img)
192
+ left_bar = self.conv_01(scale_img)
193
+ x1 = torch.cat([x1, left_bar], dim=1)
194
+ x1 = down(x1)
195
+
196
+ # Up-path (Decoder)
197
+ ms_result = [self.bottom_up(self.bottom_conv(x1))]
198
+ for i, up in enumerate(self.up_path):
199
+ x1 = up(x1, self.skip_conv[i](encs[-i - 1]))
200
+ ms_result.append(self.conv_up[i](x1))
201
+
202
+ # Multi-scale selective feature fusion
203
+ msff_result = self.final_ff(ms_result)
204
+
205
+ ##### Reconstruct #####
206
+ out_1 = self.last(msff_result) + img
207
+
208
+ return out_1
209
+
210
+ if __name__ == "__main__":
211
+ from thop import profile
212
+ input = torch.ones(1, 3, 256, 256, dtype=torch.float, requires_grad=False)
213
+
214
+ model = SRMNet(in_chn=3, wf=96, depth=4)
215
+ out = model(input)
216
+ flops, params = profile(model, inputs=(input,))
217
+
218
+ # RDBlayer = SK_RDB(in_channels=64, growth_rate=64, num_layers=3)
219
+ # print(RDBlayer)
220
+ # out = RDBlayer(input)
221
+ # flops, params = profile(RDBlayer, inputs=(input,))
222
+ print('input shape:', input.shape)
223
+ print('parameters:', params/1e6)
224
+ print('flops', flops/1e9)
225
+ print('output shape', out.shape)