bot-royale / app.py
5to9's picture
0.64 Copy tweaks
d64cc26
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
import gradio as gr
import logging
from huggingface_hub import login
import os
import traceback
from threading import Thread
from random import shuffle, choice
import json
import gspread
from google.oauth2.service_account import Credentials
logging.basicConfig(level=logging.DEBUG)
SPACER = '\n' + '*' * 40 + '\n'
SCOPES = ['https://www.googleapis.com/auth/spreadsheets', 'https://www.googleapis.com/auth/drive'] #spread scopes
HF_TOKEN = os.environ.get("HF_TOKEN", None)
login(token=HF_TOKEN)
system_prompts = {
"English": "You are a helpful chatbot that answers user input in a concise and witty way.",
"German": "Du bist ein hilfreicher Chatbot, der Usereingaben knapp und originell beantwortet.",
"French": "Tu es un chatbot utile qui répond aux questions des utilisateurs de manière concise et originale.",
"Spanish": "Eres un chatbot servicial que responde a las entradas de los usuarios de forma concisa y original."
}
htmL_info = "<center><h1>βš”οΈ Pharia Bot Battle</h1><p><big>Let the games begin: In this arena, the <a href='https://huggingface.co/Aleph-Alpha/Pharia-1-LLM-7B-control-hf'>Pharia 1 model</a> competes against secret challengers of comparable size.</p><ul><li>Try a prompt in a language you want to explore</li><li>Set the parameters and vote for the best answers</li><li>After casting your vote, both bots reveal their identity</li><p>Please note that inputs, outputs and votes are logged anonymously. Feel free to use the bot if you’re cool with that!</p></big></center>"
model_info = [{"id": "Aleph-Alpha/Pharia-1-LLM-7B-control-hf",
"name": "Pharia 1 LLM 7B control hf"}]
challenger_models = [{"id": "NousResearch/Meta-Llama-3.1-8B-Instruct",
"name": "Meta Llama 3.1 8B Instruct"},
{"id": "mistralai/Mistral-7B-Instruct-v0.3",
"name": "Mistral 7B Instruct v0.3"}]
challenger_model = choice(challenger_models)
model_info.append(challenger_model)
shuffle(model_info)
chatbot_a_name = model_info[0]['name']
chatbot_b_name = model_info[1]['name']
device = "cuda"
try:
tokenizer_a = AutoTokenizer.from_pretrained(model_info[0]['id'])
model_a = AutoModelForCausalLM.from_pretrained(
model_info[0]['id'],
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
tokenizer_b = AutoTokenizer.from_pretrained(model_info[1]['id'])
model_b = AutoModelForCausalLM.from_pretrained(
model_info[1]['id'],
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
def get_google_credentials():
"""Sets credentials for remote sheet"""
service_account_info = {
"type": "service_account",
"project_id": os.environ.get("GOOGLE_PROJECT_ID"),
"private_key_id": os.environ.get("GOOGLE_PRIVATE_KEY_ID"),
"private_key": os.environ.get("GOOGLE_PRIVATE_KEY").replace('\\n', '\n'),
"client_email": os.environ.get("GOOGLE_CLIENT_EMAIL"),
"client_id": os.environ.get("GOOGLE_CLIENT_ID"),
"auth_uri": os.environ.get("GOOGLE_AUTH_URI"),
"token_uri": os.environ.get("GOOGLE_TOKEN_URI"),
"auth_provider_x509_cert_url": os.environ.get("GOOGLE_AUTH_PROVIDER_CERT_URL"),
"client_x509_cert_url": os.environ.get("GOOGLE_CLIENT_CERT_URL")
}
credentials = Credentials.from_service_account_info(service_account_info,scopes=SCOPES)
return credentials
def get_google_sheet():
"""Intits auth, gets and returns instance of remote sheet"""
credentials = get_google_credentials()
client = gspread.authorize(credentials)
sheet = client.open("pharia_bot_battle_logs").sheet1 # Open your Google Sheet
return sheet
def apply_pharia_template(messages, add_generation_prompt=False):
"""Chat template not defined in Pharia model configs.
Adds chat template for Pharia. Expects a list of messages.
add_generation_prompt:bool extends tmplate for generation.
"""
pharia_template = """<|begin_of_text|>"""
role_map = {
"system": "<|start_header_id|>system<|end_header_id|>\n",
"user": "<|start_header_id|>user<|end_header_id|>\n",
"assistant": "<|start_header_id|>assistant<|end_header_id|>\n",
}
for message in messages:
role = message["role"]
content = message["content"]
pharia_template += role_map.get(role, "") + content + "<|eot_id|>\n"
if add_generation_prompt:
pharia_template += "<|start_header_id|>assistant<|end_header_id|>\n"
return pharia_template
@spaces.GPU()
def generate_both(system_prompt, input_text,
chatbot_a, chatbot_b,
max_new_tokens=2048, temperature=0.2,
top_p=0.9, repetition_penalty=1.1):
try:
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
input_text_list = [{"role": "user", "content": input_text}]
chat_history_a = []
for user, assistant in chatbot_a:
chat_history_a.append({"role": "user", "content": user})
chat_history_a.append({"role": "assistant", "content": assistant})
chat_history_b = []
for user, assistant in chatbot_b:
chat_history_b.append({"role": "user", "content": user})
chat_history_b.append({"role": "assistant", "content": assistant})
new_messages_a = system_prompt_list + chat_history_a + input_text_list
new_messages_b = system_prompt_list + chat_history_b + input_text_list
logging.debug(f'{SPACER}\nNew message bot A: \n{new_messages_a}\n{SPACER}')
logging.debug(f'{SPACER}\nNew message bot B: \n{new_messages_b}\n{SPACER}')
if "Pharia" in model_info[0]['id']:
formatted_conversation = apply_pharia_template(messages=new_messages_a, add_generation_prompt=True)
tokenized = tokenizer_a(formatted_conversation, return_tensors="pt").to(device)
#logging.debug(tokenized) #attention_mask
input_ids_a = tokenized.input_ids
tokenizer_a.eos_token = "<|endoftext|>" # not set fΓΌr Pharia
tokenizer_a.pad_token = "<|padding|>" # not set fΓΌr Pharia
else:
input_ids_a = tokenizer_a.apply_chat_template(
new_messages_a,
add_generation_prompt=True,
dtype=torch.float16,
return_tensors="pt"
).to(device)
if "Pharia" in model_info[1]['id']:
formatted_conversation = apply_pharia_template(messages=new_messages_a, add_generation_prompt=True)
tokenized = tokenizer_b(formatted_conversation, return_tensors="pt").to(device)
#logging.debug(tokenized)
input_ids_b = tokenized.input_ids
tokenizer_b.eos_token = "<|endoftext|>" # not set fΓΌr Pharia
tokenizer_b.pad_token = "<|padding|>" # not set fΓΌr Pharia
else:
input_ids_b = tokenizer_b.apply_chat_template(
new_messages_b,
add_generation_prompt=True,
dtype=torch.float16,
return_tensors="pt"
).to(device)
generation_kwargs_a = dict(
input_ids=input_ids_a,
streamer=text_streamer_a,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_a.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
generation_kwargs_b = dict(
input_ids=input_ids_b,
streamer=text_streamer_b,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_b.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
thread_a.start()
thread_b.start()
chatbot_a.append([input_text, ""])
chatbot_b.append([input_text, ""])
finished_a = False
finished_b = False
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
while not (finished_a and finished_b):
if not finished_a:
try:
text_a = next(text_streamer_a)
if tokenizer_a.eos_token in text_a:
eot_location = text_a.find(tokenizer_a.eos_token)
text_a = text_a[:eot_location]
finished_a = True
chatbot_a[-1][-1] += text_a
yield chatbot_a, chatbot_b
except StopIteration:
finished_a = True
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
if not finished_b:
try:
text_b = next(text_streamer_b)
if tokenizer_b.eos_token in text_b:
eot_location = text_b.find(tokenizer_b.eos_token)
text_b = text_b[:eot_location]
finished_b = True
chatbot_b[-1][-1] += text_b
yield chatbot_a, chatbot_b
except StopIteration:
finished_b = True
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
try:
# chatbot_a[-1][1] Second index of last in list
sheet_row = [system_prompt, input_text, max_new_tokens, temperature, top_p, repetition_penalty, chatbot_a_name, chatbot_a[-1][1], chatbot_b_name, chatbot_b[-1][1], "None", "None"]
logging.debug(f'{SPACER}\nOutput row: {sheet_row}')
sheet = get_google_sheet()
sheet.append_row(sheet_row, table_range="A1:L1")
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
return chatbot_a, chatbot_b
def clear():
return [], []
def handle_vote(selection, chatbot_a, chatbot_b):
if selection == "Bot A kicks ass!":
chatbot_a.append(["πŸ†", f"Thanks, man. I am {chatbot_a_name}"])
chatbot_b.append(["πŸ’©", f"Pffff … I am {chatbot_b_name}"])
chatbot_a_vote = "Winner"
chatbot_b_vote = "Looser"
elif selection == "Bot B crushes it!":
chatbot_a.append(["🀑", f"Rigged … I am {chatbot_a_name}"])
chatbot_b.append(["πŸ₯‡", f"Well deserved! I am {chatbot_b_name}"])
chatbot_a_vote = "Looser"
chatbot_b_vote = "Winner"
else:
chatbot_a.append(["🀝", f"Lame … I am {chatbot_a_name}"])
chatbot_b.append(["🀝", f"Dunno. I am {chatbot_b_name}"])
chatbot_a_vote = "Draw"
chatbot_b_vote = "Draw"
try:
# chatbot_a[-1][1] Second index of last in list
sheet_row = ["None", "None", 0, 0, 0, 0, chatbot_a_name, "None", chatbot_b_name, "None", chatbot_a_vote, chatbot_b_vote]
logging.debug(f'{SPACER}\nOutput row: {sheet_row}')
sheet = get_google_sheet()
sheet.append_row(sheet_row, table_range="A1:L1")
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
return chatbot_a, chatbot_b
with gr.Blocks() as demo:
try:
with gr.Column():
gr.HTML(htmL_info)
gr.HTML("<h2>Set Parameters</h2>")
with gr.Row(variant="compact"):
with gr.Column(scale=0):
language_dropdown = gr.Dropdown(choices=["English", "German", "French", "Spanish"], label="Select Language for System Prompt",value="English")
with gr.Column():
system_prompt = gr.Textbox(lines=1, label="System Prompt", value=system_prompts["English"], show_copy_button=True)
with gr.Row(variant="compact"):
with gr.Column(scale=1):
submit_btn = gr.Button(value="Generate", variant="primary")
clear_btn = gr.Button(value="Clear", variant="secondary")
input_text = gr.Textbox(lines=1, label="Prompt", value="Write a Nike style ad headline about the shame of being second best.", scale=3, show_copy_button=True)
with gr.Accordion(label="Generation Configurations", open=False):
max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=512, label="Max new tokens", step=128)
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.97, label="Top_p", step=0.01)
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
gr.HTML("<h2>Check outputs</h2>")
with gr.Row(variant="panel"):
with gr.Column():
chatbot_a = gr.Chatbot(label="Model A", show_copy_button=True, height=500)
with gr.Column():
chatbot_b = gr.Chatbot(label="Model B", show_copy_button=True, height=500)
gr.HTML("<h2>Vote!</h2>")
with gr.Row(variant="panel"):
better_bot = gr.Radio(["Bot A kicks ass!", "Bot B crushes it!", "It's a draw."], label="Rate the output!")
language_dropdown.change(
lambda lang: system_prompts[lang],
inputs=[language_dropdown],
outputs=[system_prompt]
)
better_bot.select(handle_vote, inputs=[better_bot, chatbot_a, chatbot_b], outputs=[chatbot_a, chatbot_b])
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
if __name__ == "__main__":
demo.queue().launch()