import torch import os from transformers import BeitFeatureExtractor, BeitForImageClassification from PIL import Image from torchvision.utils import save_image import torch.nn.functional as F from torchvision import transforms from attacker import * from torch.nn import CrossEntropyLoss import argparse device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def make_args(): parser = argparse.ArgumentParser(description='PyTorch MS_COCO Training') parser.add_argument('inputs', type=str) parser.add_argument('--out_dir', type=str, default='./output') parser.add_argument('--target', type=str, default='auto', help='[auto, ai, human]') parser.add_argument('--eps', type=float, default=8/8, help='Noise intensity ') parser.add_argument('--step_size', type=float, default=1.087313/8, help='Attack step size') parser.add_argument('--steps', type=int, default=20, help='Attack step count') parser.add_argument('--test_atk', action='store_true') return parser.parse_args() class Attacker: def __init__(self, args, pgd_callback): self.args=args os.makedirs(args.out_dir, exist_ok=True) print('正在加载模型...') self.feature_extractor = BeitFeatureExtractor.from_pretrained('saltacc/anime-ai-detect') self.model = BeitForImageClassification.from_pretrained('saltacc/anime-ai-detect').to(device) print('加载完毕') if args.target=='ai': #攻击成被识别为AI self.target = torch.tensor([1]).to(device) elif args.target=='human': self.target = torch.tensor([0]).to(device) dataset_mean_t = torch.tensor([0.5, 0.5, 0.5]).view(1, -1, 1, 1).to(device) dataset_std_t = torch.tensor([0.5, 0.5, 0.5]).view(1, -1, 1, 1).to(device) self.pgd = PGD(self.model, img_transform=(lambda x: (x - dataset_mean_t) / dataset_std_t, lambda x: x * dataset_std_t + dataset_mean_t)) self.pgd.set_para(eps=(args.eps * 2) / 255, alpha=lambda: (args.step_size * 2) / 255, iters=args.steps) self.pgd.set_loss(CrossEntropyLoss()) self.pgd.set_call_back(pgd_callback) def save_image(self, image, noise, img_name): # 缩放图片只缩放噪声 W, H = image.size noise = F.interpolate(noise, size=(H, W), mode='bicubic') img_save = transforms.ToTensor()(image) + noise save_image(img_save, os.path.join(self.args.out_dir, f'{img_name[:img_name.rfind(".")]}_atk.png')) def attack_(self, image): inputs = self.feature_extractor(images=image, return_tensors="pt")['pixel_values'].to(device) if self.args.target == 'auto': with torch.no_grad(): outputs = self.model(inputs) logits = outputs.logits cls = logits.argmax(-1).item() target = torch.tensor([cls]).to(device) else: target = self.target if self.args.test_atk: self.test_image(inputs, 'before attack') atk_img = self.pgd.attack(inputs, target) noise = self.pgd.img_transform[1](atk_img).detach().cpu() - self.pgd.img_transform[1](inputs).detach().cpu() if self.args.test_atk: self.test_image(atk_img, 'after attack') return atk_img, noise def attack_one(self, path): image = Image.open(path).convert('RGB') atk_img, noise = self.attack_(image) self.save_image(image, noise, os.path.basename(path)) def attack(self, path): count=0 if os.path.isdir(path): img_list=[os.path.join(path, x) for x in os.listdir(path)] for img in img_list: if (img.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff'))): self.attack_one(img) count+=1 else: if (path.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff'))): self.attack_one(path) count += 1 print(f'总共攻击{count}张图像') @torch.no_grad() def test_image(self, img, pre_fix): outputs = self.model(img) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print(pre_fix, "class:", self.model.config.id2label[predicted_class_idx], 'logits:', logits) if __name__ == '__main__': args=make_args() attacker = Attacker(args) attacker.attack(args.inputs)