File size: 5,202 Bytes
cff1674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os, sys
sys.path.insert(0, os.getcwd())
import argparse
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"base_model",
help="The model which use it to train the dreambooth model",
default="",
type=str,
)
parser.add_argument(
"db_model",
help="the dreambooth model you want to extract the locon",
default="",
type=str,
)
parser.add_argument(
"output_name", help="the output model", default="./out.pt", type=str
)
parser.add_argument(
"--is_v2",
help="Your base/db model is sd v2 or not",
default=False,
action="store_true",
)
parser.add_argument(
"--is_sdxl",
help="Your base/db model is sdxl or not",
default=False,
action="store_true",
)
parser.add_argument(
"--device",
help="Which device you want to use to extract the locon",
default="cpu",
type=str,
)
parser.add_argument(
"--mode",
help=(
'extraction mode, can be "full", "fixed", "threshold", "ratio", "quantile". '
'If not "fixed", network_dim and conv_dim will be ignored'
),
default="fixed",
type=str,
)
parser.add_argument(
"--safetensors",
help="use safetensors to save locon model",
default=False,
action="store_true",
)
parser.add_argument(
"--linear_dim",
help="network dim for linear layer in fixed mode",
default=1,
type=int,
)
parser.add_argument(
"--conv_dim",
help="network dim for conv layer in fixed mode",
default=1,
type=int,
)
parser.add_argument(
"--linear_threshold",
help="singular value threshold for linear layer in threshold mode",
default=0.0,
type=float,
)
parser.add_argument(
"--conv_threshold",
help="singular value threshold for conv layer in threshold mode",
default=0.0,
type=float,
)
parser.add_argument(
"--linear_ratio",
help="singular ratio for linear layer in ratio mode",
default=0.0,
type=float,
)
parser.add_argument(
"--conv_ratio",
help="singular ratio for conv layer in ratio mode",
default=0.0,
type=float,
)
parser.add_argument(
"--linear_quantile",
help="singular value quantile for linear layer quantile mode",
default=1.0,
type=float,
)
parser.add_argument(
"--conv_quantile",
help="singular value quantile for conv layer quantile mode",
default=1.0,
type=float,
)
parser.add_argument(
"--use_sparse_bias",
help="enable sparse bias",
default=False,
action="store_true",
)
parser.add_argument(
"--sparsity", help="sparsity for sparse bias", default=0.98, type=float
)
parser.add_argument(
"--disable_cp",
help="don't use cp decomposition",
default=False,
action="store_true",
)
return parser.parse_args()
ARGS = get_args()
from lycoris.utils import extract_diff
from lycoris.kohya.model_utils import load_models_from_stable_diffusion_checkpoint
from lycoris.kohya.sdxl_model_util import load_models_from_sdxl_checkpoint
import torch
from safetensors.torch import save_file
def main():
args = ARGS
if args.is_sdxl:
base = load_models_from_sdxl_checkpoint(None, args.base_model, args.device)
db = load_models_from_sdxl_checkpoint(None, args.db_model, args.device)
else:
base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model)
db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model)
linear_mode_param = {
"fixed": args.linear_dim,
"threshold": args.linear_threshold,
"ratio": args.linear_ratio,
"quantile": args.linear_quantile,
"full": None,
}[args.mode]
conv_mode_param = {
"fixed": args.conv_dim,
"threshold": args.conv_threshold,
"ratio": args.conv_ratio,
"quantile": args.conv_quantile,
"full": None,
}[args.mode]
if args.is_sdxl:
db_tes = [db[0], db[1]]
db_unet = db[3]
base_tes = [base[0], base[1]]
base_unet = base[3]
else:
db_tes = [db[0]]
db_unet = db[2]
base_tes = [base[0]]
base_unet = base[2]
state_dict = extract_diff(
base_tes,
db_tes,
base_unet,
db_unet,
args.mode,
linear_mode_param,
conv_mode_param,
args.device,
args.use_sparse_bias,
args.sparsity,
not args.disable_cp,
)
if args.safetensors:
save_file(state_dict, args.output_name)
else:
torch.save(state_dict, args.output_name)
if __name__ == "__main__":
main() |