File size: 20,961 Bytes
cff1674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from typing import *

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

import torch.linalg as linalg

from tqdm import tqdm


def make_sparse(t: torch.Tensor, sparsity=0.95):
    abs_t = torch.abs(t)
    np_array = abs_t.detach().cpu().numpy()
    quan = float(np.quantile(np_array, sparsity))
    sparse_t = t.masked_fill(abs_t < quan, 0)
    return sparse_t


def extract_conv(

    weight: Union[torch.Tensor, nn.Parameter],

    mode = 'fixed',

    mode_param = 0,

    device = 'cpu',

    is_cp = False,

) -> Tuple[nn.Parameter, nn.Parameter]:
    weight = weight.to(device)
    out_ch, in_ch, kernel_size, _ = weight.shape
    
    U, S, Vh = linalg.svd(weight.reshape(out_ch, -1))
    
    if mode=='fixed':
        lora_rank = mode_param
    elif mode=='threshold':
        assert mode_param>=0
        lora_rank = torch.sum(S>mode_param)
    elif mode=='ratio':
        assert 1>=mode_param>=0
        min_s = torch.max(S)*mode_param
        lora_rank = torch.sum(S>min_s)
    elif mode=='quantile' or mode=='percentile':
        assert 1>=mode_param>=0
        s_cum = torch.cumsum(S, dim=0)
        min_cum_sum = mode_param * torch.sum(S)
        lora_rank = torch.sum(s_cum<min_cum_sum)
    else:
        raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"')
    lora_rank = max(1, lora_rank)
    lora_rank = min(out_ch, in_ch, lora_rank)
    if lora_rank>=out_ch/2 and not is_cp:
        return weight, 'full'
    
    U = U[:, :lora_rank]
    S = S[:lora_rank]
    U = U @ torch.diag(S)
    Vh = Vh[:lora_rank, :]
    
    diff = (weight - (U @ Vh).reshape(out_ch, in_ch, kernel_size, kernel_size)).detach()
    extract_weight_A = Vh.reshape(lora_rank, in_ch, kernel_size, kernel_size).detach()
    extract_weight_B = U.reshape(out_ch, lora_rank, 1, 1).detach()
    del U, S, Vh, weight
    return (extract_weight_A, extract_weight_B, diff), 'low rank'


def extract_linear(

    weight: Union[torch.Tensor, nn.Parameter],

    mode = 'fixed',

    mode_param = 0,

    device = 'cpu',

) -> Tuple[nn.Parameter, nn.Parameter]:
    weight = weight.to(device)
    out_ch, in_ch = weight.shape
    
    U, S, Vh = linalg.svd(weight)
    
    if mode=='fixed':
        lora_rank = mode_param
    elif mode=='threshold':
        assert mode_param>=0
        lora_rank = torch.sum(S>mode_param)
    elif mode=='ratio':
        assert 1>=mode_param>=0
        min_s = torch.max(S)*mode_param
        lora_rank = torch.sum(S>min_s)
    elif mode=='quantile' or mode=='percentile':
        assert 1>=mode_param>=0
        s_cum = torch.cumsum(S, dim=0)
        min_cum_sum = mode_param * torch.sum(S)
        lora_rank = torch.sum(s_cum<min_cum_sum)
    else:
        raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"')
    lora_rank = max(1, lora_rank)
    lora_rank = min(out_ch, in_ch, lora_rank)
    if lora_rank>=out_ch/2:
        return weight, 'full'
    
    U = U[:, :lora_rank]
    S = S[:lora_rank]
    U = U @ torch.diag(S)
    Vh = Vh[:lora_rank, :]
    
    diff = (weight - U @ Vh).detach()
    extract_weight_A = Vh.reshape(lora_rank, in_ch).detach()
    extract_weight_B = U.reshape(out_ch, lora_rank).detach()
    del U, S, Vh, weight
    return (extract_weight_A, extract_weight_B, diff), 'low rank'


def extract_diff(

    base_model,

    db_model,

    mode = 'fixed',

    linear_mode_param = 0,

    conv_mode_param = 0,

    extract_device = 'cpu',

    use_bias = False,

    sparsity = 0.98,

    small_conv = True

):
    UNET_TARGET_REPLACE_MODULE = [
        "Transformer2DModel", 
        "Attention", 
        "ResnetBlock2D", 
        "Downsample2D", 
        "Upsample2D"
    ]
    UNET_TARGET_REPLACE_NAME = [
        "conv_in",
        "conv_out",
        "time_embedding.linear_1",
        "time_embedding.linear_2",
    ]
    TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
    LORA_PREFIX_UNET = 'lora_unet'
    LORA_PREFIX_TEXT_ENCODER = 'lora_te'
    def make_state_dict(

        prefix, 

        root_module: torch.nn.Module,

        target_module: torch.nn.Module,

        target_replace_modules,

        target_replace_names = []

    ):
        loras = {}
        temp = {}
        temp_name = {}
        
        for name, module in root_module.named_modules():
            if module.__class__.__name__ in target_replace_modules:
                temp[name] = {}
                for child_name, child_module in module.named_modules():
                    if child_module.__class__.__name__ not in {'Linear', 'Conv2d'}:
                        continue
                    temp[name][child_name] = child_module.weight
            elif name in target_replace_names:
                temp_name[name] = module.weight
        
        for name, module in tqdm(list(target_module.named_modules())):
            if name in temp:
                weights = temp[name]
                for child_name, child_module in module.named_modules():
                    lora_name = prefix + '.' + name + '.' + child_name
                    lora_name = lora_name.replace('.', '_')
                    layer = child_module.__class__.__name__
                    if layer in {'Linear', 'Conv2d'}:
                        root_weight = child_module.weight
                        if torch.allclose(root_weight, weights[child_name]):
                            continue
                    
                    if layer == 'Linear':
                        weight, decompose_mode = extract_linear(
                            (child_module.weight - weights[child_name]),
                            mode,
                            linear_mode_param,
                            device = extract_device,
                        )
                        if decompose_mode == 'low rank':
                            extract_a, extract_b, diff = weight
                    elif layer == 'Conv2d':
                        is_linear = (child_module.weight.shape[2] == 1
                                     and child_module.weight.shape[3] == 1)
                        weight, decompose_mode = extract_conv(
                            (child_module.weight - weights[child_name]), 
                            mode,
                            linear_mode_param if is_linear else conv_mode_param,
                            device = extract_device,
                        )
                        if decompose_mode == 'low rank':
                            extract_a, extract_b, diff = weight
                        if small_conv and not is_linear and decompose_mode == 'low rank':
                            dim = extract_a.size(0)
                            (extract_c, extract_a, _), _ = extract_conv(
                                extract_a.transpose(0, 1), 
                                'fixed', dim, 
                                extract_device, True
                            )
                            extract_a = extract_a.transpose(0, 1)
                            extract_c = extract_c.transpose(0, 1)
                            loras[f'{lora_name}.lora_mid.weight'] = extract_c.detach().cpu().contiguous().half()
                            diff = child_module.weight - torch.einsum(
                                'i j k l, j r, p i -> p r k l', 
                                extract_c, extract_a.flatten(1, -1), extract_b.flatten(1, -1)
                            ).detach().cpu().contiguous()
                            del extract_c
                    else:
                        continue
                    if decompose_mode == 'low rank':
                        loras[f'{lora_name}.lora_down.weight'] = extract_a.detach().cpu().contiguous().half()
                        loras[f'{lora_name}.lora_up.weight'] = extract_b.detach().cpu().contiguous().half()
                        loras[f'{lora_name}.alpha'] = torch.Tensor([extract_a.shape[0]]).half()
                        if use_bias:
                            diff = diff.detach().cpu().reshape(extract_b.size(0), -1)
                            sparse_diff = make_sparse(diff, sparsity).to_sparse().coalesce()
                            
                            indices = sparse_diff.indices().to(torch.int16)
                            values = sparse_diff.values().half()
                            loras[f'{lora_name}.bias_indices'] = indices
                            loras[f'{lora_name}.bias_values'] = values
                            loras[f'{lora_name}.bias_size'] = torch.tensor(diff.shape).to(torch.int16)
                        del extract_a, extract_b, diff
                    elif decompose_mode == 'full':
                        loras[f'{lora_name}.diff'] = weight.detach().cpu().contiguous().half()
                    else:
                        raise NotImplementedError
            elif name in temp_name:
                weights = temp_name[name]
                lora_name = prefix + '.' + name
                lora_name = lora_name.replace('.', '_')
                layer = module.__class__.__name__
                
                if layer in {'Linear', 'Conv2d'}:
                    root_weight = module.weight
                    if torch.allclose(root_weight, weights):
                        continue
                
                if layer == 'Linear':
                    weight, decompose_mode = extract_linear(
                        (root_weight - weights),
                        mode,
                        linear_mode_param,
                        device = extract_device,
                    )
                    if decompose_mode == 'low rank':
                        extract_a, extract_b, diff = weight
                elif layer == 'Conv2d':
                    is_linear = (
                        root_weight.shape[2] == 1
                        and root_weight.shape[3] == 1
                    )
                    weight, decompose_mode = extract_conv(
                        (root_weight - weights), 
                        mode,
                        linear_mode_param if is_linear else conv_mode_param,
                        device = extract_device,
                    )
                    if decompose_mode == 'low rank':
                        extract_a, extract_b, diff = weight
                    if small_conv and not is_linear and decompose_mode == 'low rank':
                        dim = extract_a.size(0)
                        (extract_c, extract_a, _), _ = extract_conv(
                            extract_a.transpose(0, 1), 
                            'fixed', dim, 
                            extract_device, True
                        )
                        extract_a = extract_a.transpose(0, 1)
                        extract_c = extract_c.transpose(0, 1)
                        loras[f'{lora_name}.lora_mid.weight'] = extract_c.detach().cpu().contiguous().half()
                        diff = root_weight - torch.einsum(
                            'i j k l, j r, p i -> p r k l', 
                            extract_c, extract_a.flatten(1, -1), extract_b.flatten(1, -1)
                        ).detach().cpu().contiguous()
                        del extract_c
                else:
                    continue
                if decompose_mode == 'low rank':
                    loras[f'{lora_name}.lora_down.weight'] = extract_a.detach().cpu().contiguous().half()
                    loras[f'{lora_name}.lora_up.weight'] = extract_b.detach().cpu().contiguous().half()
                    loras[f'{lora_name}.alpha'] = torch.Tensor([extract_a.shape[0]]).half()
                    if use_bias:
                        diff = diff.detach().cpu().reshape(extract_b.size(0), -1)
                        sparse_diff = make_sparse(diff, sparsity).to_sparse().coalesce()
                        
                        indices = sparse_diff.indices().to(torch.int16)
                        values = sparse_diff.values().half()
                        loras[f'{lora_name}.bias_indices'] = indices
                        loras[f'{lora_name}.bias_values'] = values
                        loras[f'{lora_name}.bias_size'] = torch.tensor(diff.shape).to(torch.int16)
                    del extract_a, extract_b, diff
                elif decompose_mode == 'full':
                    loras[f'{lora_name}.diff'] = weight.detach().cpu().contiguous().half()
                else:
                    raise NotImplementedError
        return loras
    
    text_encoder_loras = make_state_dict(
        LORA_PREFIX_TEXT_ENCODER, 
        base_model[0], db_model[0], 
        TEXT_ENCODER_TARGET_REPLACE_MODULE
    )
    
    unet_loras = make_state_dict(
        LORA_PREFIX_UNET,
        base_model[2], db_model[2], 
        UNET_TARGET_REPLACE_MODULE,
        UNET_TARGET_REPLACE_NAME
    )
    print(len(text_encoder_loras), len(unet_loras))
    return text_encoder_loras|unet_loras


def get_module(

    lyco_state_dict: Dict,

    lora_name

):
    if f'{lora_name}.lora_up.weight' in lyco_state_dict:
        up = lyco_state_dict[f'{lora_name}.lora_up.weight']
        down = lyco_state_dict[f'{lora_name}.lora_down.weight']
        mid = lyco_state_dict.get(f'{lora_name}.lora_mid.weight', None)
        alpha = lyco_state_dict.get(f'{lora_name}.alpha', None)
        return 'locon', (up, down, mid, alpha)
    elif f'{lora_name}.hada_w1_a' in lyco_state_dict:
        w1a = lyco_state_dict[f'{lora_name}.hada_w1_a']
        w1b = lyco_state_dict[f'{lora_name}.hada_w1_b']
        w2a = lyco_state_dict[f'{lora_name}.hada_w2_a']
        w2b = lyco_state_dict[f'{lora_name}.hada_w2_b']
        t1 = lyco_state_dict.get(f'{lora_name}.hada_t1', None)
        t2 = lyco_state_dict.get(f'{lora_name}.hada_t2', None)
        alpha = lyco_state_dict.get(f'{lora_name}.alpha', None)
        return 'hada', (w1a, w1b, w2a, w2b, t1, t2, alpha)
    elif f'{lora_name}.weight' in lyco_state_dict:
        weight = lyco_state_dict[f'{lora_name}.weight']
        on_input = lyco_state_dict.get(f'{lora_name}.on_input', False)
        return 'ia3', (weight, on_input)
    elif (f'{lora_name}.lokr_w1' in lyco_state_dict
          or f'{lora_name}.lokr_w1_a' in lyco_state_dict):
        w1 = lyco_state_dict.get(f'{lora_name}.lokr_w1', None)
        w1a = lyco_state_dict.get(f'{lora_name}.lokr_w1_a', None)
        w1b = lyco_state_dict.get(f'{lora_name}.lokr_w1_b', None)
        w2 = lyco_state_dict.get(f'{lora_name}.lokr_w2', None)
        w2a = lyco_state_dict.get(f'{lora_name}.lokr_w2_a', None)
        w2b = lyco_state_dict.get(f'{lora_name}.lokr_w2_b', None)
        t1 = lyco_state_dict.get(f'{lora_name}.lokr_t1', None)
        t2 = lyco_state_dict.get(f'{lora_name}.lokr_t2', None)
        alpha = lyco_state_dict.get(f'{lora_name}.alpha', None)
        return 'kron', (w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha)
    elif f'{lora_name}.diff' in lyco_state_dict:
        return 'full', lyco_state_dict[f'{lora_name}.diff']
    else:
        return 'None', ()


def cp_weight_from_conv(

    up, down, mid

):
    up = up.reshape(up.size(0), up.size(1))
    down = down.reshape(down.size(0), down.size(1))
    return torch.einsum('m n w h, i m, n j -> i j w h', mid, up, down)

def cp_weight(

    wa, wb, t

):
    temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
    return torch.einsum('i j k l, i r -> r j k l', temp, wa)


@torch.no_grad()
def rebuild_weight(module_type, params, orig_weight, scale=1):
    if orig_weight is None:
        return orig_weight
    merged = orig_weight
    if module_type == 'locon':
        up, down, mid, alpha = params
        if alpha is not None:
            scale *= alpha/up.size(1)
        if mid is not None:
            rebuild = cp_weight_from_conv(up, down, mid)
        else:
            rebuild = up.reshape(up.size(0),-1) @ down.reshape(down.size(0), -1)
        merged = orig_weight + rebuild.reshape(orig_weight.shape) * scale
        del up, down, mid, alpha, params, rebuild
    elif module_type == 'hada':
        w1a, w1b, w2a, w2b, t1, t2, alpha = params
        if alpha is not None:
            scale *= alpha / w1b.size(0)
        if t1 is not None:
            rebuild1 = cp_weight(w1a, w1b, t1)
        else:
            rebuild1 = w1a @ w1b
        if t2 is not None:
            rebuild2 = cp_weight(w2a, w2b, t2)
        else:
            rebuild2 = w2a @ w2b
        rebuild = (rebuild1 * rebuild2).reshape(orig_weight.shape)
        merged = orig_weight + rebuild * scale
        del w1a, w1b, w2a, w2b, t1, t2, alpha, params, rebuild, rebuild1, rebuild2
    elif module_type == 'ia3':
        weight, on_input = params
        if not on_input:
            weight = weight.reshape(-1, 1)
        merged = orig_weight + weight * orig_weight * scale
        del weight, on_input, params
    elif module_type == 'kron':
        w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha = params
        if alpha is not None and (w1b is not None or w2b is not None):
            scale *= alpha / (w1b.size(0) if w1b else w2b.size(0))
        if w1a is not None and w1b is not None:
            if t1:
                w1 = cp_weight(w1a, w1b, t1)
            else:
                w1 = w1a @ w1b
        if w2a is not None and w2b is not None:
            if t2:
                w2 = cp_weight(w2a, w2b, t2)
            else:
                w2 = w2a @ w2b
        rebuild = torch.kron(w1, w2).reshape(orig_weight.shape) 
        merged = orig_weight + rebuild* scale
        del w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha, params, rebuild
    elif module_type == 'full':
        rebuild = params.reshape(orig_weight.shape) 
        merged = orig_weight + rebuild * scale
        del params, rebuild
    
    return merged


def merge(

    base_model,

    lyco_state_dict,

    scale: float = 1.0,

    device = 'cpu'

):
    UNET_TARGET_REPLACE_MODULE = [
        "Transformer2DModel", 
        "Attention", 
        "ResnetBlock2D", 
        "Downsample2D", 
        "Upsample2D"
    ]
    UNET_TARGET_REPLACE_NAME = [
        "conv_in",
        "conv_out",
        "time_embedding.linear_1",
        "time_embedding.linear_2",
    ]
    TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
    LORA_PREFIX_UNET = 'lora_unet'
    LORA_PREFIX_TEXT_ENCODER = 'lora_te'
    merged = 0
    def merge_state_dict(

        prefix, 

        root_module: torch.nn.Module,

        lyco_state_dict: Dict[str,torch.Tensor],

        target_replace_modules,

        target_replace_names = []

    ):
        nonlocal merged
        for name, module in tqdm(list(root_module.named_modules()), desc=f'Merging {prefix}'):
            if module.__class__.__name__ in target_replace_modules:
                for child_name, child_module in module.named_modules():
                    if child_module.__class__.__name__ not in {'Linear', 'Conv2d'}:
                        continue
                    lora_name = prefix + '.' + name + '.' + child_name
                    lora_name = lora_name.replace('.', '_')
                    
                    result = rebuild_weight(*get_module(
                        lyco_state_dict, lora_name
                    ), getattr(child_module, 'weight'), scale)
                    if result is not None:
                        merged += 1
                        child_module.requires_grad_(False)
                        child_module.weight.copy_(result)
            elif name in target_replace_names:
                lora_name = prefix + '.' + name
                lora_name = lora_name.replace('.', '_')
                    
                result = rebuild_weight(*get_module(
                    lyco_state_dict, lora_name
                ), getattr(module, 'weight'), scale)
                if result is not None:
                    merged += 1
                    module.requires_grad_(False)
                    module.weight.copy_(result)
    
    if device == 'cpu':
        for k, v in tqdm(list(lyco_state_dict.items()), desc='Converting Dtype'):
            lyco_state_dict[k] = v.float()
    
    merge_state_dict(
        LORA_PREFIX_TEXT_ENCODER,
        base_model[0],
        lyco_state_dict,
        TEXT_ENCODER_TARGET_REPLACE_MODULE,
        UNET_TARGET_REPLACE_NAME
    )
    merge_state_dict(
        LORA_PREFIX_UNET,
        base_model[2],
        lyco_state_dict,
        UNET_TARGET_REPLACE_MODULE,
        UNET_TARGET_REPLACE_NAME
    )
    print(f'{merged} Modules been merged')