import argparse | |
import torch | |
from tqdm import tqdm | |
parser = argparse.ArgumentParser(description="Prune a model") | |
parser.add_argument("model_prune", type=str, help="Path to model to prune") | |
parser.add_argument("prune_output", type=str, help="Path to pruned ckpt output") | |
parser.add_argument("--half", action="store_true", help="Save weights in half precision.") | |
args = parser.parse_args() | |
print("Loading model...") | |
model_prune = torch.load(args.model_prune) | |
theta_prune = model_prune["state_dict"] | |
theta = {} | |
print("Pruning model...") | |
for key in tqdm(theta_prune.keys(), desc="Pruning keys"): | |
if "model" in key: | |
theta.update({key: theta_prune[key]}) | |
del theta_prune | |
if args.half: | |
print("Halving model...") | |
state_dict = {k: v.half() for k, v in tqdm(theta.items(), desc="Halving weights")} | |
else: | |
state_dict = theta | |
del theta | |
print("Saving pruned model...") | |
torch.save({"state_dict": state_dict}, args.prune_output) | |
del state_dict | |
print("Done pruning!") |