import os, sys sys.path.insert(0, os.getcwd()) import argparse def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "base_model", help="The model which use it to train the dreambooth model", default="", type=str, ) parser.add_argument( "db_model", help="the dreambooth model you want to extract the locon", default="", type=str, ) parser.add_argument( "output_name", help="the output model", default="./out.pt", type=str ) parser.add_argument( "--is_v2", help="Your base/db model is sd v2 or not", default=False, action="store_true", ) parser.add_argument( "--is_sdxl", help="Your base/db model is sdxl or not", default=False, action="store_true", ) parser.add_argument( "--device", help="Which device you want to use to extract the locon", default="cpu", type=str, ) parser.add_argument( "--mode", help=( 'extraction mode, can be "full", "fixed", "threshold", "ratio", "quantile". ' 'If not "fixed", network_dim and conv_dim will be ignored' ), default="fixed", type=str, ) parser.add_argument( "--safetensors", help="use safetensors to save locon model", default=False, action="store_true", ) parser.add_argument( "--linear_dim", help="network dim for linear layer in fixed mode", default=1, type=int, ) parser.add_argument( "--conv_dim", help="network dim for conv layer in fixed mode", default=1, type=int, ) parser.add_argument( "--linear_threshold", help="singular value threshold for linear layer in threshold mode", default=0.0, type=float, ) parser.add_argument( "--conv_threshold", help="singular value threshold for conv layer in threshold mode", default=0.0, type=float, ) parser.add_argument( "--linear_ratio", help="singular ratio for linear layer in ratio mode", default=0.0, type=float, ) parser.add_argument( "--conv_ratio", help="singular ratio for conv layer in ratio mode", default=0.0, type=float, ) parser.add_argument( "--linear_quantile", help="singular value quantile for linear layer quantile mode", default=1.0, type=float, ) parser.add_argument( "--conv_quantile", help="singular value quantile for conv layer quantile mode", default=1.0, type=float, ) parser.add_argument( "--use_sparse_bias", help="enable sparse bias", default=False, action="store_true", ) parser.add_argument( "--sparsity", help="sparsity for sparse bias", default=0.98, type=float ) parser.add_argument( "--disable_cp", help="don't use cp decomposition", default=False, action="store_true", ) return parser.parse_args() ARGS = get_args() from lycoris.utils import extract_diff from lycoris.kohya.model_utils import load_models_from_stable_diffusion_checkpoint from lycoris.kohya.sdxl_model_util import load_models_from_sdxl_checkpoint import torch from safetensors.torch import save_file def main(): args = ARGS if args.is_sdxl: base = load_models_from_sdxl_checkpoint(None, args.base_model, "cpu") db = load_models_from_sdxl_checkpoint(None, args.db_model, "cpu") else: base = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.base_model) db = load_models_from_stable_diffusion_checkpoint(args.is_v2, args.db_model) linear_mode_param = { "fixed": args.linear_dim, "threshold": args.linear_threshold, "ratio": args.linear_ratio, "quantile": args.linear_quantile, "full": None, }[args.mode] conv_mode_param = { "fixed": args.conv_dim, "threshold": args.conv_threshold, "ratio": args.conv_ratio, "quantile": args.conv_quantile, "full": None, }[args.mode] if args.is_sdxl: db_tes = [db[0], db[1]] db_unet = db[3] base_tes = [base[0], base[1]] base_unet = base[3] else: db_tes = [db[0]] db_unet = db[2] base_tes = [base[0]] base_unet = base[2] state_dict = extract_diff( base_tes, db_tes, base_unet, db_unet, args.mode, linear_mode_param, conv_mode_param, args.device, args.use_sparse_bias, args.sparsity, not args.disable_cp, ) if args.safetensors: save_file(state_dict, args.output_name) else: torch.save(state_dict, args.output_name) if __name__ == "__main__": main()