Spaces:
Running
Running
File size: 10,595 Bytes
cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 6946f01 cc63034 9d46d12 cc63034 c13527d ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 6946f01 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 ffa0700 cc63034 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import streamlit as st
import extra_streamlit_components as stx
import requests
from PIL import Image
from io import BytesIO
from llama_index.llms.palm import PaLM
from llama_index import ServiceContext, VectorStoreIndex, Document, StorageContext, load_index_from_storage
from llama_index.memory import ChatMemoryBuffer
import os
import datetime
from llama_index.llms import Cohere
from llama_index.query_engine import CitationQueryEngine
#imports for resnet
from transformers import AutoFeatureExtractor, ResNetForImageClassification
import torch
from io import BytesIO
# Set up the title of the application
st.title("AInimal Go!")
#st.set_page_config(layout="wide")
st.write("My Pokemon Go inspired 'AInimal Go!' app. You can upload an image or snap a picture of an animal and start chatting with it")
# Sidebar
st.sidebar.markdown('## Created By')
st.sidebar.markdown("""
Harshad Suryawanshi
- [Linkedin](https://www.linkedin.com/in/harshadsuryawanshi/)
- [Medium](https://harshadsuryawanshi.medium.com/)
""")
st.sidebar.markdown('## Other Projects')
st.sidebar.markdown("""
- [Building My Own GPT4-V with PaLM and Kosmos](https://lnkd.in/dawgKZBP)
- [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/)
- [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/)
- [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/)
""")
st.sidebar.markdown('## Disclaimer')
st.sidebar.markdown("""
This application, titled 'AInimal Go!', is a conceptual prototype designed to demonstrate the innovative use of Large Language Models (LLMs) in enabling interactive conversations with animals through images. While the concept is vaguely inspired by the interactive and augmented reality elements popularized by games like Pokemon Go, it does not use any assets, characters, or intellectual property from the Pokemon franchise. The interactions and conversations generated by this application are entirely fictional and created for entertainment and educational purposes. They should not be regarded as factual or accurate representations of animal behavior or communication. The author and the application do not hold any affiliation with the Pokemon brand or its creators, and no endorsement from them is implied. Users are encouraged to use this application responsibly and with an understanding of its purely illustrative nature.
""")
# Initialize the cookie manager
cookie_manager = stx.CookieManager()
#Function to init resnet
@st.cache_resource(show_spinner="Initializing ResNet model for image classification. Please wait...")
def load_model_and_labels():
# Load animal labels as a dictionary
animal_labels_dict = {}
with open('imagenet_animal_labels_subset.txt', 'r') as file:
for line in file:
parts = line.strip().split(':')
class_id = int(parts[0].strip())
label_name = parts[1].strip().strip("'")
animal_labels_dict[class_id] = label_name
# Initialize feature extractor and model
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-18")
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-18")
return feature_extractor, model, animal_labels_dict
feature_extractor, model, animal_labels_dict = load_model_and_labels()
# Function to predict image label
@st.cache_data
def get_image_caption(image_data):
image = Image.open(image_data)
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label_id = logits.argmax(-1).item()
predicted_label_name = model.config.id2label[predicted_label_id]
st.write(predicted_label_name)
# Return the predicted animal name
return predicted_label_name, predicted_label_id
@st.cache_resource(show_spinner="Initializing LLM and setting up service context. Please wait...")
def init_llm(api_key):
# llm = PaLM(api_key=api_key)
llm = Cohere(model="command", api_key=st.secrets['COHERE_API_TOKEN'])
service_context = ServiceContext.from_defaults(llm=llm, embed_model="local")
storage_context = StorageContext.from_defaults(persist_dir="storage")
index = load_index_from_storage(storage_context, index_id="index", service_context=service_context)
chatmemory = ChatMemoryBuffer.from_defaults(token_limit=1500)
return llm, service_context, storage_context, index, chatmemory
llm, service_context, storage_context, index, chatmemory = init_llm(os.environ["GOOGLE_API_KEY"])
def is_animal(predicted_label_id):
# Check if the predicted label ID is within the animal classes range
return 0 <= predicted_label_id <= 398
# Function to create the chat engine.
@st.cache_resource
def create_chat_engine(img_desc, api_key):
#llm = PaLM(api_key=api_key)
#service_context = ServiceContext.from_defaults(llm=llm,embed_model="local")
doc = Document(text=img_desc)
# Now is_animal is a boolean indicating whether the image is of an animal
print("Is the image of an animal:", is_animal)
query_engine = CitationQueryEngine.from_args(
index,
similarity_top_k=3,
# here we can control how granular citation sources are, the default is 512
citation_chunk_size=512,
verbose=True
)
return query_engine
# Clear chat function
def clear_chat():
if "messages" in st.session_state:
del st.session_state.messages
if "image_data" in st.session_state:
del st.session_state.image_data
# Callback function to clear the chat when a new image is uploaded
def on_image_upload():
clear_chat()
# Retrieve the message count from cookies
message_count = cookie_manager.get(cookie='message_count')
if message_count is None:
message_count = 0
else:
message_count = int(message_count)
# If the message limit has been reached, disable the inputs
#if message_count <= 20:
if 0:
st.error("Notice: The maximum message limit for this demo version has been reached.")
# Disabling the uploader and input by not displaying them
image_uploader_placeholder = st.empty() # Placeholder for the uploader
chat_input_placeholder = st.empty() # Placeholder for the chat input
st.stop()
else:
# Add a clear chat button
if st.button("Clear Chat"):
clear_chat()
# Image upload section.
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], key="uploaded_image", on_change=on_image_upload)
col1, col2, col3 = st.columns([1, 2, 1])
with col2: # Camera input will be in the middle column
camera_image = st.camera_input("Take a picture", on_change=on_image_upload)
# Determine the source of the image (upload or camera)
if image_file is not None:
image_data = BytesIO(image_file.getvalue())
elif camera_image is not None:
image_data = BytesIO(camera_image.getvalue())
else:
image_data = None
if image_data:
# Display the uploaded image at a standard width.
st.session_state['assistant_avatar'] = image_data
st.image(image_data, caption='Uploaded Image.', width=200)
# Process the uploaded image to get a caption.
#img_desc = get_image_caption(image_data)
img_desc, label_id = get_image_caption(image_data)
if not (is_animal(label_id)):
#st.error("Please upload image of an animal!")
st.error("Please upload image of an animal!")
st.stop()
# Initialize the chat engine with the image description.
chat_engine = create_chat_engine(img_desc, os.environ["GOOGLE_API_KEY"])
st.write("Image Uploaded Successfully. Ask me anything about it.")
# Initialize session state for messages if it doesn't exist
if "messages" not in st.session_state:
st.session_state.messages = []
# Display previous messages
for message in st.session_state.messages:
avatar = st.session_state['assistant_avatar'] if message["role"] == "assistant" else None
with st.chat_message(message["role"], avatar = avatar):
st.write(message["content"])
# Handle new user input
user_input = st.chat_input("Ask me about the image:", key="chat_input")
if user_input:
# Append user message to the session state
st.session_state.messages.append({"role": "user", "content": user_input})
# Display user message immediately
with st.chat_message("user"):
st.write(user_input)
# Call the chat engine to get the response if an image has been uploaded
if image_data and user_input:
try:
with st.spinner('Waiting for the chat engine to respond...'):
# Get the response from your chat engine
system_prompt=f"""
You are a chatbot, able to have normal interactions. Do not make up information.
You always answer in great detail and are polite. Your job is to roleplay as an {img_desc}.
Remember to make {img_desc} sounds while talking but dont overdo it.
"""
response = chat_engine.query(f"{system_prompt}. {user_input}")
#response = chat_engine.chat(f"""You are a chatbot that roleplays as an animal and also makes animal sounds when chatting.
#You always answer in great detail and are polite. Your responses always descriptive.
#Your job is to rolelpay as the animal that is mentioned in the image the user has uploaded. Image description: {img_desc}. User question
#{user_input}""")
# Append assistant message to the session state
st.session_state.messages.append({"role": "assistant", "content": response.response})
# Display the assistant message
with st.chat_message("assistant"):
st.write(response.response)
st.expander("hello")
except Exception as e:
st.error(f'An error occurred.')
# Optionally, you can choose to break the flow here if a critical error happens
# return
# Increment the message count and update the cookie
message_count += 1
cookie_manager.set('message_count', str(message_count), expires_at=datetime.datetime.now() + datetime.timedelta(days=30)) |