Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
-
from torchvision import transforms
|
5 |
from facenet_pytorch import MTCNN
|
6 |
-
from torchvision.transforms.functional import to_pil_image
|
7 |
|
8 |
# Function to load the ViT model and MTCNN
|
9 |
def load_model_and_mtcnn(model_path):
|
@@ -21,7 +20,7 @@ def preprocess_image(image, mtcnn, device):
|
|
21 |
cropped_faces = mtcnn(image)
|
22 |
if cropped_faces is not None and len(cropped_faces) > 0:
|
23 |
# Convert the first detected face tensor back to PIL Image for further processing
|
24 |
-
processed_image =
|
25 |
except Exception as e:
|
26 |
st.write(f"Exception in face detection: {e}")
|
27 |
processed_image = image
|
@@ -40,8 +39,8 @@ def predict(image_tensor, model, device):
|
|
40 |
model.eval()
|
41 |
with torch.no_grad():
|
42 |
outputs = model(image_tensor)
|
43 |
-
# Adjust for your model's output
|
44 |
-
probabilities = torch.nn.functional.softmax(outputs
|
45 |
predicted_class = torch.argmax(probabilities, dim=1)
|
46 |
return predicted_class, probabilities
|
47 |
|
@@ -61,4 +60,4 @@ if uploaded_file is not None:
|
|
61 |
|
62 |
st.write(f"Predicted class: {predicted_class.item()}")
|
63 |
# Display the final processed image
|
64 |
-
st.image(final_image, caption='Processed Image', use_column_width=True)
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
+
from torchvision import transforms
|
5 |
from facenet_pytorch import MTCNN
|
|
|
6 |
|
7 |
# Function to load the ViT model and MTCNN
|
8 |
def load_model_and_mtcnn(model_path):
|
|
|
20 |
cropped_faces = mtcnn(image)
|
21 |
if cropped_faces is not None and len(cropped_faces) > 0:
|
22 |
# Convert the first detected face tensor back to PIL Image for further processing
|
23 |
+
processed_image = cropped_faces[0].cpu()
|
24 |
except Exception as e:
|
25 |
st.write(f"Exception in face detection: {e}")
|
26 |
processed_image = image
|
|
|
39 |
model.eval()
|
40 |
with torch.no_grad():
|
41 |
outputs = model(image_tensor)
|
42 |
+
# Adjust for your model's output structure
|
43 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
44 |
predicted_class = torch.argmax(probabilities, dim=1)
|
45 |
return predicted_class, probabilities
|
46 |
|
|
|
60 |
|
61 |
st.write(f"Predicted class: {predicted_class.item()}")
|
62 |
# Display the final processed image
|
63 |
+
st.image(final_image, caption='Processed Image', use_column_width=True)
|