Spaces:
Running
Running
File size: 9,142 Bytes
94afa8b bf25481 94afa8b bf25481 94afa8b bf25481 94afa8b bf25481 94afa8b bf25481 94afa8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import plotly.colors
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import os
import matplotlib.pyplot as plt
import argparse
from utils.score_extract.ood_agg import ood_t2i_agg, ood_i2t_agg
DEFAULT_PLOTLY_COLORS = plotly.colors.DEFAULT_PLOTLY_COLORS
def to_rgba(rgb, alpha=1):
return 'rgba' + rgb[3:][:-1] + f', {alpha})'
def radar_plot(results, thetas, selected_models):
# Extract performance values for each model across all benchmarks
model_performance = {}
selected_models = [os.path.basename(model) for model in selected_models]
for model in selected_models:
if model in results:
benchmarks_data = results[model]
model_performance[model] = [benchmarks_data[subfield] for subfield in benchmarks_data.keys()]
# Create radar chart with plotly
fig = make_subplots(
rows=2, cols=1,
shared_xaxes=True,
vertical_spacing=0.2,
row_heights=[1, 0.4],
specs=[[{"type": "polar"}], [{"type": "table"}]]
)
for i, (model, performance) in enumerate(model_performance.items()):
color = DEFAULT_PLOTLY_COLORS[i % len(DEFAULT_PLOTLY_COLORS)]
fig.add_trace(
go.Scatterpolar(
r=performance + [performance[0]],
theta=thetas + [thetas[0]],
fill='toself',
connectgaps=True,
fillcolor=to_rgba(color, 0.1),
name=model.split('/')[-1], # Use the last part of the model name for clarity
),
row=1, col=1
)
header_texts = ["Model"] + [x.replace("<br>", " ") for x in thetas]
rows = [[x.split('/')[-1] for x in selected_models]] + [[round(score[i], 2) for score in [model_performance[x] for x in selected_models]] for i in range(len(thetas))]
# column_widths = [len(x) for x in header_texts]
# column_widths[0] *= len(thetas)
fig.add_trace(
go.Table(
header=dict(values=header_texts, font=dict(size=14.5), align="left"),
cells=dict(
values=rows,
align="left",
font=dict(size=14.5),
height=30
),
# columnwidth=column_widths
),
row=2, col=1
)
fig.update_layout(
height=900,
legend=dict(font=dict(size=20), orientation="h", xanchor="center", x=0.5, y=0.35),
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100], # Assuming accuracy is a percentage between 0 and 100
tickfont=dict(size=12)
),
angularaxis=dict(tickfont=dict(size=20), type="category")
),
showlegend=True,
# title=f"{title}"
)
return fig
def main_radar_plot(main_scores, selected_models):
fig = make_subplots(
rows=2, cols=1,
shared_xaxes=True,
vertical_spacing=0.2,
row_heights=[1.0, 0.5],
specs=[[{"type": "polar"}], [{"type": "table"}]]
)
model_scores = {}
for model in selected_models:
model_name = os.path.basename(model)
model_scores[model_name] = main_scores[model_name]
perspectives = list(model_scores[os.path.basename(selected_models[0])].keys())
perspectives_shift = perspectives
for i, model_name in enumerate(model_scores.keys()):
color = DEFAULT_PLOTLY_COLORS[i % len(DEFAULT_PLOTLY_COLORS)]
score_shifted = list(model_scores[model_name].values())
fig.add_trace(
go.Scatterpolar(
r=score_shifted + [score_shifted[0]],
theta=perspectives_shift + [perspectives_shift[0]],
connectgaps=True,
fill='toself',
fillcolor=to_rgba(color, 0.1),
name=model_name, # Use the last part of the model name for clarity
),
row=1, col=1
)
header_texts = ["Model"] + perspectives
rows = [
list(model_scores.keys()), # Model Names
*[[round(score[perspective], 2) for score in list(model_scores.values())] for perspective in perspectives]
]
column_widths = [10] + [5] * len(perspectives)
fig.add_trace(
go.Table(
header=dict(values=header_texts, font=dict(size=14.5), align="left"),
cells=dict(
values=rows,
align="left",
font=dict(size=14.5),
height=30,
),
columnwidth=column_widths,
),
row=2, col=1
)
fig.update_layout(
height=1200,
legend=dict(font=dict(size=20), orientation="h", xanchor="center", x=0.5, y=0.4),
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100], # Assuming accuracy is a percentage between 0 and 100
tickfont=dict(size=12)
),
angularaxis=dict(tickfont=dict(size=20), type="category", rotation=5)
),
showlegend=True,
title=dict(text="MM-DecodingTrust Scores (Higher is Better)"),
)
return fig
def breakdown_plot(scenario_results, subfields, selected_models):
fig = radar_plot(scenario_results, subfields, selected_models)
return fig
def update_subscores(target_model, main_scores, config_dicts):
perspectives = []
target_model = target_model.split('/')[-1]
curr_main_scores = {}
curr_main_scores[target_model] = {}
for perspective in main_scores[target_model].keys():
curr_main_scores[target_model][config_dicts[perspective]["name"]] = main_scores[target_model][perspective]
perspectives.append(config_dicts[perspective]["name"])
return curr_main_scores
def generate_plot(model, main_scores, sub_scores, config_dict, out_path="plots"):
curr_main_scores = update_subscores(model, main_scores, config_dict)
for idx, perspective in enumerate(config_dict.keys()):
if config_dict[perspective]["sub_plot"] == False:
continue
# if "openai/gpt-4-0314" not in sub_scores[perspective].keys():
# model_list = [model]
# else:
# model_list = [model, "openai/gpt-4-0314"]
model_list = [model]
subplot = breakdown_plot(sub_scores[perspective], list(sub_scores[perspective][model].keys()), model_list)
perspective_name = config_dict[perspective]["name"].replace(" ", "_")
subplot.write_image(f"{out_path}/{perspective_name}_breakdown.png", width=1400, height=700)
plot = main_radar_plot(curr_main_scores, [model])
plot.write_image(f"{out_path}/main.png", width=1400, height=700)
def generate_main_plot(models, main_scores):
curr_main_scores = main_scores
plot = main_radar_plot(curr_main_scores, models)
return plot
# plot.write_image(f"{out_path}/main.png", width=1400, height=700)
def generate_sub_plot(models, sub_scores, perspective):
subplot = breakdown_plot(sub_scores[perspective], list(sub_scores[perspective][models[0]].keys()), models)
return subplot
if __name__ == "__main__":
# parser = argparse.ArgumentParser()
# parser.add_argument("--model", type=str, default="hf/meta-llama/Llama-2-7b-chat-hf")
# args = parser.parse_args()
t2i_models = [ # Average time spent running the following example
"dall-e-2",
"dall-e-3",
"DeepFloyd/IF-I-M-v1.0", # 15.372
"dreamlike-art/dreamlike-photoreal-2.0", # 3.526
"prompthero/openjourney-v4", # 4.981
"stabilityai/stable-diffusion-xl-base-1.0", # 7.463
]
i2t_models = [ # Average time spent running the following example
"gpt-4-vision-preview",
"gpt-4o-2024-05-13",
"llava-hf/llava-v1.6-vicuna-7b-hf"
]
perspectives = ["Safety", "Fairness", "Hallucination", "Privacy", "Adv", "OOD"]
main_scores_t2i = {}
main_scores_i2t = {}
sub_scores_t2i = {}
sub_scores_i2t = {}
for model in t2i_models:
model = model.split("/")[-1]
main_scores_t2i[model] = {}
for perspective in perspectives:
# Place holder
main_scores_t2i[model][perspective] = ood_t2i_agg(model, "./data/results")["score"]
if perspective not in sub_scores_t2i.keys():
sub_scores_t2i[perspective] = {}
sub_scores_t2i[perspective][model] = ood_t2i_agg(model, "./data/results")["subscenarios"]
for model in i2t_models:
model = model.split("/")[-1]
main_scores_i2t[model] = {}
for perspective in perspectives:
# Place holder
main_scores_i2t[model][perspective] = ood_i2t_agg(model, "./data/results")["score"]
if perspective not in sub_scores_i2t.keys():
sub_scores_i2t[perspective] = {}
sub_scores_i2t[perspective][model] = ood_i2t_agg(model, "./data/results")["subscenarios"]
# generate_main_plot(t2i_models, main_scores_t2i)
# generate_main_plot(i2t_models, main_scores_i2t)
generate_sub_plot(t2i_models, sub_scores_t2i, "ood")
# generate_sub_plot(i2t_models, sub_scores_i2t)
|