File size: 2,684 Bytes
460fdc7
 
 
42e8f64
 
f913e34
2dc39dd
f913e34
069ca0e
 
ae3e5b2
e5599c2
13ef1b6
e5599c2
 
f7b4006
d4ded0a
e5599c2
d4ded0a
d8b9e17
ba0ef01
d4ded0a
7022131
f7b4006
7022131
7786ff5
7022131
 
 
7786ff5
f7b4006
7022131
f7b4006
2dc39dd
 
 
 
 
7022131
f7b4006
2dc39dd
 
 
 
 
7022131
f7b4006
d4ded0a
 
 
a43f014
d4ded0a
7022131
f7b4006
2dc39dd
 
 
 
 
7022131
f7b4006
2dc39dd
 
 
 
f7b4006
7022131
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
import pandas as pd
from huggingface_hub import list_models
import plotly.express as px

def get_plots(task_data):
    #TO DO : hover text with energy efficiency number, parameters
    task_df= pd.read_csv(task_data)
    task_df['Total GPU Energy (Wh)'] = task_df['total_gpu_energy']*1000
    task_df = task_df.sort_values(by=['Total GPU Energy (Wh)'])
    task_df['energy_star'] = pd.cut(task_df['Total GPU Energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"])
    fig = px.scatter(task_df, x="model", y='Total GPU Energy (Wh)', height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"})
    #fig.update_traces(mode="markers+lines", hovertemplate=None)
    fig.update_layout(hovermode="y")
    return fig

def get_model_names(task_data):
    #TODO: add link to results in model card of each model
    task_df= pd.read_csv(task_data)
    model_names = task_df[['model']]
    return model_names

demo = gr.Blocks()

with demo:
    gr.Markdown(
        """# Energy Star Leaderboard

    TODO """
    )
    with gr.Tabs():
        with gr.TabItem("Text Generation πŸ’¬"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('data/text_generation.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('data/text_generation.csv'))

        with gr.TabItem("Image Generation πŸ“·"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('data/image_generation.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('data/image_generation.csv'))

        with gr.TabItem("Text Classification 🎭"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('data/text_classification.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('data/text_classification.csv'))

        with gr.TabItem("Image Classification πŸ–ΌοΈ"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('data/image_classification.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('data/image_classification.csv'))

        with gr.TabItem("Extractive QA ❔"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('data/question_answering.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('data/question_answering.csv'))

demo.launch()