File size: 2,119 Bytes
460fdc7 42e8f64 f7b4006 7786ff5 7022131 f7b4006 7022131 7786ff5 7022131 7786ff5 f7b4006 7022131 f7b4006 7786ff5 7022131 f7b4006 7786ff5 7022131 f7b4006 42e8f64 7022131 f7b4006 7786ff5 7022131 f7b4006 7786ff5 f7b4006 7022131 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
import pandas as pd
from huggingface_hub import list_models
import plotly.express as px
def get_plots(task_df):
grouped_df = task_df[['total_gpu_energy', 'model']].groupby('model').mean().sort_values('total_gpu_energy',ascending = False)
grouped_df = grouped_df.reset_index()
grouped_df['model'] = grouped_df['model'].str.split('/').str[-1]
grouped_df['task'] = 'text_classification'
grouped_df['total_gpu_energy (Wh)'] = grouped_df['total_gpu_energy']*1000
grouped_df['energy_star'] = pd.cut(grouped_df['total_gpu_energy (Wh)'], 3, labels=["βββ", "ββ", "β"])
grouped_df = px.scatter(grouped_df, x="model", y="total_gpu_energy (Wh)", height= 500, width= 800, color = 'energy_star', color_discrete_map={"β": 'red', "ββ": "yellow", "βββ": "green"})
return grouped_df
# %% app.ipynb 3
demo = gr.Blocks()
with demo:
gr.Markdown(
"""# Energy Star Leaderboard
TODO """
)
with gr.Tabs():
with gr.TabItem("Text Generation π¬"):
with gr.Row():
animal_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.TabItem("Image Generation π·"):
with gr.Row():
science_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.TabItem("Text Classification π"):
with gr.Row():
plot = gr.Plot(get_plots('data/text_classification.csv'))
with gr.TabItem("Image Classification πΌοΈ"):
with gr.Row():
landscape_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.TabItem("Extractive QA β"):
with gr.Row():
wildcard_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
demo.launch()
|