sasha's picture
sasha HF staff
updating data paths
5b5b33a
raw
history blame
2.75 kB
import gradio as gr
import pandas as pd
from huggingface_hub import list_models
import plotly.express as px
def get_plots(task_data):
#TO DO : hover text with energy efficiency number, parameters
task_df= pd.read_csv(task_data)
task_df['Total GPU Energy (Wh)'] = task_df['total_gpu_energy']*1000
task_df = task_df.sort_values(by=['Total GPU Energy (Wh)'])
task_df['energy_star'] = pd.cut(task_df['Total GPU Energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"])
fig = px.scatter(task_df, x="model", y='Total GPU Energy (Wh)', height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"})
#fig.update_traces(mode="markers+lines", hovertemplate=None)
fig.update_layout(hovermode="y")
return fig
def get_model_names(task_data):
#TODO: add link to results in model card of each model
task_df= pd.read_csv(task_data)
model_names = task_df[['model']]
return model_names
demo = gr.Blocks()
with demo:
gr.Markdown(
"""# Energy Star Leaderboard
TODO """
)
with gr.Tabs():
with gr.TabItem("Text Generation πŸ’¬"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('data/energy/text_generation.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('data/energy/text_generation.csv'))
with gr.TabItem("Image Generation πŸ“·"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('data/energy/image_generation.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('data/energy/image_generation.csv'))
with gr.TabItem("Text Classification 🎭"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('data/energy/text_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('data/energy/text_classification.csv'))
with gr.TabItem("Image Classification πŸ–ΌοΈ"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('data/energy/image_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('data/image_classification.csv'))
with gr.TabItem("Extractive QA ❔"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('data/energy/question_answering.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('data/energy/question_answering.csv'))
demo.launch()