|
import gradio as gr |
|
import pandas as pd |
|
from huggingface_hub import list_models |
|
import plotly.express as px |
|
|
|
def get_plots(task): |
|
|
|
task_df= pd.read_csv('data/energy/'+task) |
|
params_df = pd.read_csv('data/params/'+task) |
|
params_df= params_df.rename(columns={"Link": "model"}) |
|
all_df = pd.merge(task_df, params_df, on='model') |
|
all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000 |
|
all_df = all_df.sort_values(by=['Total GPU Energy (Wh)']) |
|
all_df['parameters'] = all_df['parameters'].apply(format_params) |
|
all_df['energy_star'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["βββ", "ββ", "β"]) |
|
fig = px.scatter(all_df, x="model", y='Total GPU Energy (Wh)', custom_data=['parameters'], height= 500, width= 800, color = 'energy_star', color_discrete_map={"β": 'red', "ββ": "yellow", "βββ": "green"}) |
|
fig.update_traces( |
|
hovertemplate="<br>".join([ |
|
"Total Energy: %{y}", |
|
"Parameters: %{customdata[0]}"]) |
|
) |
|
return fig |
|
|
|
def get_model_names(task_data): |
|
|
|
task_df= pd.read_csv('data/energy/'+task_data) |
|
task_df=task_df.drop_duplicates(subset=['model']) |
|
task_df['model'] = "["+ str(task_df['model'])+'](https://huggingface.co/'+str(task_df['model'])+")" |
|
model_names = task_df[['model']] |
|
return model_names |
|
|
|
def format_params(num): |
|
if num > 1000000000: |
|
if not num % 1000000000: |
|
return f'{num // 1000000000}B' |
|
return f'{round(num / 1000000000, 1)}B' |
|
return f'{num // 1000000}M' |
|
|
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
with demo: |
|
gr.Markdown( |
|
"""# Energy Star Leaderboard |
|
|
|
TODO """ |
|
) |
|
with gr.Tabs(): |
|
with gr.TabItem("Text Generation π¬"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot = gr.Plot(get_plots('text_generation.csv')) |
|
with gr.Column(): |
|
table = gr.Dataframe(get_model_names('text_generation.csv')) |
|
|
|
with gr.TabItem("Image Generation π·"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot = gr.Plot(get_plots('image_generation.csv')) |
|
with gr.Column(): |
|
table = gr.Dataframe(get_model_names('image_generation.csv')) |
|
|
|
with gr.TabItem("Text Classification π"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot = gr.Plot(get_plots('text_classification.csv')) |
|
with gr.Column(): |
|
table = gr.Dataframe(get_model_names('text_classification.csv')) |
|
|
|
with gr.TabItem("Image Classification πΌοΈ"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot = gr.Plot(get_plots('image_classification.csv')) |
|
with gr.Column(): |
|
table = gr.Dataframe(get_model_names('image_classification.csv')) |
|
|
|
with gr.TabItem("Image Captioning π"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot = gr.Plot(get_plots('question_answering.csv')) |
|
with gr.Column(): |
|
table = gr.Dataframe(get_model_names('question_answering.csv')) |
|
with gr.TabItem("Summarization π"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot = gr.Plot(get_plots('summarization.csv')) |
|
with gr.Column(): |
|
table = gr.Dataframe(get_model_names('summarization.csv')) |
|
|
|
with gr.TabItem("Automatic Speech Recognition π¬ "): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot = gr.Plot(get_plots('asr.csv')) |
|
with gr.Column(): |
|
table = gr.Dataframe(get_model_names('asr.csv')) |
|
|
|
with gr.TabItem("Object Detection π"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot = gr.Plot(get_plots('object_detection.csv')) |
|
with gr.Column(): |
|
table = gr.Dataframe(get_model_names('object_detection.csv')) |
|
|
|
with gr.TabItem("Sentence Similarity π"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot = gr.Plot(get_plots('sentence_similarity.csv')) |
|
with gr.Column(): |
|
table = gr.Dataframe(get_model_names('sentence_similarity.csv')) |
|
|
|
with gr.TabItem("Extractive QA β"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot = gr.Plot(get_plots('question_answering.csv')) |
|
with gr.Column(): |
|
table = gr.Dataframe(get_model_names('question_answering.csv')) |
|
|
|
demo.launch() |
|
|