import gradio as gr import pandas as pd from huggingface_hub import list_models import plotly.express as px def get_plots(task): #TO DO : hover text with energy efficiency number, parameters task_df= pd.read_csv('data/energy/'+task) params_df = pd.read_csv('data/params/'+task) params_df= params_df.rename(columns={"Link": "model"}) all_df = pd.merge(task_df, params_df, on='model') all_df['Total GPU Energy (Wh)'] = all_df['total_gpu_energy']*1000 all_df = all_df.sort_values(by=['Total GPU Energy (Wh)']) all_df['energy_star'] = pd.cut(all_df['Total GPU Energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"]) fig = px.scatter(all_df, x="model", y='Total GPU Energy (Wh)', custom_data=['parameters'], height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"}) fig.update_traces( hovertemplate="
".join([ "Total Energy: %{y}", "Parameters: %{customdata[0]}"]) ) return fig def get_model_names(task_data): #TODO: add link to results in model card of each model task_df= pd.read_csv('data/energy/'+task_data) task_df=task_df.drop_duplicates(subset=['model']) model_names = task_df[['model']] return model_names demo = gr.Blocks() with demo: gr.Markdown( """# Energy Star Leaderboard TODO """ ) with gr.Tabs(): with gr.TabItem("Text Generation 💬"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('text_generation.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('text_generation.csv')) with gr.TabItem("Image Generation 📷"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('image_generation.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('image_generation.csv')) with gr.TabItem("Text Classification 🎭"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('text_classification.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('text_classification.csv')) with gr.TabItem("Image Classification 🖼️"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('image_classification.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('image_classification.csv')) with gr.TabItem("Image Captioning 📝"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('question_answering.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('question_answering.csv')) with gr.TabItem("Summarization 📃"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('summarization.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('summarization.csv')) with gr.TabItem("Automatic Speech Recognition 💬 "): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('asr.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('asr.csv')) with gr.TabItem("Object Detection 🚘"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('object_detection.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('object_detection.csv')) with gr.TabItem("Sentence Similarity 📚"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('sentence_similarity.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('sentence_similarity.csv')) with gr.TabItem("Extractive QA ❔"): with gr.Row(): with gr.Column(): plot = gr.Plot(get_plots('question_answering.csv')) with gr.Column(): table = gr.Dataframe(get_model_names('question_answering.csv')) demo.launch()