File size: 41,747 Bytes
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
import os
from pytorch_memlab import LineProfiler,profile
import torch
import torch.nn as nn
import numpy as np
import pytorch_lightning as pl
from torch.optim.lr_scheduler import LambdaLR
from einops import rearrange, repeat
from contextlib import contextmanager
from functools import partial
from tqdm import tqdm
from torchvision.utils import make_grid
try:
    from pytorch_lightning.utilities.distributed import rank_zero_only
except:
    from pytorch_lightning.utilities import rank_zero_only # torch2

from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from ldm.modules.ema import LitEma
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.ddpm import DDPM, disabled_train
from omegaconf import ListConfig

__conditioning_keys__ = {'concat': 'c_concat',
                         'crossattn': 'c_crossattn',
                         'adm': 'y'}


class LatentDiffusion_audio(DDPM):
    """main class"""
    def __init__(self,

                 first_stage_config,

                 cond_stage_config,

                 num_timesteps_cond=None,

                 mel_dim=80,

                 mel_length=848,

                 cond_stage_key="image",

                 cond_stage_trainable=False,

                 concat_mode=True,

                 cond_stage_forward=None,

                 conditioning_key=None,

                 scale_factor=1.0,

                 scale_by_std=False,

                 *args, **kwargs):
        self.num_timesteps_cond = default(num_timesteps_cond, 1)
        self.scale_by_std = scale_by_std
        assert self.num_timesteps_cond <= kwargs['timesteps']
        # for backwards compatibility after implementation of DiffusionWrapper
        if conditioning_key is None:
            conditioning_key = 'concat' if concat_mode else 'crossattn'
        if cond_stage_config == '__is_unconditional__':
            conditioning_key = None
        ckpt_path = kwargs.pop("ckpt_path", None)
        ignore_keys = kwargs.pop("ignore_keys", [])
        super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
        self.concat_mode = concat_mode
        self.mel_dim = mel_dim
        self.mel_length = mel_length
        self.cond_stage_trainable = cond_stage_trainable
        self.cond_stage_key = cond_stage_key
        try:
            self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
        except:
            self.num_downs = 0
        if not scale_by_std:
            self.scale_factor = scale_factor
        else:
            self.register_buffer('scale_factor', torch.tensor(scale_factor))
        self.instantiate_first_stage(first_stage_config)
        self.instantiate_cond_stage(cond_stage_config)
        self.cond_stage_forward = cond_stage_forward
        self.clip_denoised = False
        self.bbox_tokenizer = None  

        self.restarted_from_ckpt = False
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys)
            self.restarted_from_ckpt = True

    def make_cond_schedule(self, ):
        self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
        ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
        self.cond_ids[:self.num_timesteps_cond] = ids

    @rank_zero_only
    @torch.no_grad()
    def on_train_batch_start(self, batch, batch_idx):
        # only for very first batch
        if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
            assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
            # set rescale weight to 1./std of encodings
            print("### USING STD-RESCALING ###")
            x = super().get_input(batch, self.first_stage_key)
            x = x.to(self.device)
            encoder_posterior = self.encode_first_stage(x)
            z = self.get_first_stage_encoding(encoder_posterior).detach()# get latent
            del self.scale_factor
            self.register_buffer('scale_factor', 1. / z.flatten().std())# 1/latent.std, get_first_stage_encoding returns self.scale_factor * latent
            print(f"setting self.scale_factor to {self.scale_factor}")
            print("### USING STD-RESCALING ###")

    # def on_train_epoch_start(self):
    #     print("!!!!!!!!!!!!!!!!!!!!!!!!!!on_train_epoch_strat",self.trainer.train_dataloader.batch_sampler,hasattr(self.trainer.train_dataloader.batch_sampler,'set_epoch'))
    #     if hasattr(self.trainer.train_dataloader.batch_sampler,'set_epoch'):
    #         self.trainer.train_dataloader.batch_sampler.set_epoch(self.current_epoch)
    #     return super().on_train_epoch_start()


    def register_schedule(self,

                          given_betas=None, beta_schedule="linear", timesteps=1000,

                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)

        self.shorten_cond_schedule = self.num_timesteps_cond > 1
        if self.shorten_cond_schedule:
            self.make_cond_schedule()

    def instantiate_first_stage(self, config):
        model = instantiate_from_config(config)
        self.first_stage_model = model.eval()
        self.first_stage_model.train = disabled_train
        for param in self.first_stage_model.parameters():
            param.requires_grad = False

    def instantiate_cond_stage(self, config):
        if not self.cond_stage_trainable:
            if config == "__is_first_stage__":
                print("Using first stage also as cond stage.")
                self.cond_stage_model = self.first_stage_model
            elif config == "__is_unconditional__":
                print(f"Training {self.__class__.__name__} as an unconditional model.")
                self.cond_stage_model = None
            else:
                model = instantiate_from_config(config)
                self.cond_stage_model = model.eval()
                self.cond_stage_model.train = disabled_train
                for param in self.cond_stage_model.parameters():
                    param.requires_grad = False
        else:
            assert config != '__is_first_stage__'
            assert config != '__is_unconditional__'
            model = instantiate_from_config(config)
            self.cond_stage_model = model

    def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
        denoise_row = []
        for zd in tqdm(samples, desc=desc):
            denoise_row.append(self.decode_first_stage(zd.to(self.device),
                                                            force_not_quantize=force_no_decoder_quantization))
        n_imgs_per_row = len(denoise_row)
        if len(denoise_row[0].shape) == 3:
            denoise_row = [x.unsqueeze(1) for x in denoise_row]
        denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
        denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
        denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
        return denoise_grid

    def get_first_stage_encoding(self, encoder_posterior):
        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
            z = encoder_posterior.sample()
        elif isinstance(encoder_posterior, torch.Tensor):
            z = encoder_posterior
        else:
            raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
        return self.scale_factor * z

    #@profile
    def get_learned_conditioning(self, c):
        if self.cond_stage_forward is None:
            if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
                c = self.cond_stage_model.encode(c)
                if isinstance(c, DiagonalGaussianDistribution):
                    c = c.mode()
            else:
                c = self.cond_stage_model(c)
        else:
            assert hasattr(self.cond_stage_model, self.cond_stage_forward)
            c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
        return c


    @torch.no_grad()
    def get_unconditional_conditioning(self, batch_size, null_label=None):
        if null_label is not None:
            xc = null_label
            if isinstance(xc, ListConfig):
                xc = list(xc)
            if isinstance(xc, dict) or isinstance(xc, list):
                c = self.get_learned_conditioning(xc)
            else:
                if hasattr(xc, "to"):
                    xc = xc.to(self.device)
                c = self.get_learned_conditioning(xc)
        else:
            if self.cond_stage_key in ["class_label", "cls"]:
                xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
                return self.get_learned_conditioning(xc)
            else:
                raise NotImplementedError("todo")
        if isinstance(c, list):  # in case the encoder gives us a list
            for i in range(len(c)):
                c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
        else:
            c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
        return c

    def meshgrid(self, h, w):
        y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
        x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)

        arr = torch.cat([y, x], dim=-1)
        return arr

    def delta_border(self, h, w):
        """

        :param h: height

        :param w: width

        :return: normalized distance to image border,

         wtith min distance = 0 at border and max dist = 0.5 at image center

        """
        lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
        arr = self.meshgrid(h, w) / lower_right_corner
        dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
        dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
        edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
        return edge_dist

    def get_weighting(self, h, w, Ly, Lx, device):
        weighting = self.delta_border(h, w)
        weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
                               self.split_input_params["clip_max_weight"], )
        weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)

        if self.split_input_params["tie_braker"]:
            L_weighting = self.delta_border(Ly, Lx)
            L_weighting = torch.clip(L_weighting,
                                     self.split_input_params["clip_min_tie_weight"],
                                     self.split_input_params["clip_max_tie_weight"])

            L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
            weighting = weighting * L_weighting
        return weighting

    def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):  # todo load once not every time, shorten code
        """

        :param x: img of size (bs, c, h, w)

        :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])

        """
        bs, nc, h, w = x.shape

        # number of crops in image
        Ly = (h - kernel_size[0]) // stride[0] + 1
        Lx = (w - kernel_size[1]) // stride[1] + 1

        if uf == 1 and df == 1:
            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
            unfold = torch.nn.Unfold(**fold_params)

            fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)

            weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
            normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
            weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))

        elif uf > 1 and df == 1:
            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
            unfold = torch.nn.Unfold(**fold_params)

            fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
                                dilation=1, padding=0,
                                stride=(stride[0] * uf, stride[1] * uf))
            fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)

            weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
            normalization = fold(weighting).view(1, 1, h * uf, w * uf)  # normalizes the overlap
            weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))

        elif df > 1 and uf == 1:
            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
            unfold = torch.nn.Unfold(**fold_params)

            fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
                                dilation=1, padding=0,
                                stride=(stride[0] // df, stride[1] // df))
            fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)

            weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
            normalization = fold(weighting).view(1, 1, h // df, w // df)  # normalizes the overlap
            weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))

        else:
            raise NotImplementedError

        return fold, unfold, normalization, weighting

    @torch.no_grad()
    def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,

                  cond_key=None, return_original_cond=False, bs=None):
        x = super().get_input(batch, k)
        if bs is not None:
            x = x[:bs]
        x = x.to(self.device)
        encoder_posterior = self.encode_first_stage(x)
        z = self.get_first_stage_encoding(encoder_posterior).detach()

        if self.model.conditioning_key is not None:
            if cond_key is None:
                cond_key = self.cond_stage_key
            if cond_key != self.first_stage_key:
                if cond_key in ['caption', 'coordinates_bbox', 'hybrid_feat']:
                    xc = batch[cond_key]
                elif cond_key == 'class_label':
                    xc = batch
                else:
                    xc = super().get_input(batch, cond_key).to(self.device)
            else:
                xc = x
            if not self.cond_stage_trainable or force_c_encode: # False
                if isinstance(xc, dict) or isinstance(xc, list):
                    # import pudb; pudb.set_trace()
                    c = self.get_learned_conditioning(xc)
                else:
                    c = self.get_learned_conditioning(xc.to(self.device))
            else:
                c = xc
            if bs is not None:
                c = c[:bs]
            # Testing #
            if cond_key == 'masked_image':
                mask = super().get_input(batch, "mask")
                cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106]
                c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106]
            # Testing #
            if self.use_positional_encodings:
                pos_x, pos_y = self.compute_latent_shifts(batch)
                ckey = __conditioning_keys__[self.model.conditioning_key]
                c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}

        else:
            c = None
            xc = None
            if self.use_positional_encodings:
                pos_x, pos_y = self.compute_latent_shifts(batch)
                c = {'pos_x': pos_x, 'pos_y': pos_y}
        out = [z, c]
        if return_first_stage_outputs:
            xrec = self.decode_first_stage(z)
            out.extend([x, xrec])
        if return_original_cond:
            out.append(xc)
        return out

    @torch.no_grad()
    def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
        if predict_cids:
            if z.dim() == 4:
                z = torch.argmax(z.exp(), dim=1).long()
            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
            z = rearrange(z, 'b h w c -> b c h w').contiguous()

        z = 1. / self.scale_factor * z


        if isinstance(self.first_stage_model, VQModelInterface):
            return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
        else:
            return self.first_stage_model.decode(z)

    # same as above but without decorator
    def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
        if predict_cids:
            if z.dim() == 4:
                z = torch.argmax(z.exp(), dim=1).long()
            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
            z = rearrange(z, 'b h w c -> b c h w').contiguous()

        z = 1. / self.scale_factor * z


        if isinstance(self.first_stage_model, VQModelInterface):
            return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
        else:
            return self.first_stage_model.decode(z)

    @torch.no_grad()
    def encode_first_stage(self, x):
        return self.first_stage_model.encode(x)

    def shared_step(self, batch, **kwargs):
        x, c = self.get_input(batch, self.first_stage_key)
        loss = self(x, c)
        return loss

    def test_step(self,batch,batch_idx):
        cond = batch[self.cond_stage_key] #  * self.test_repeat
        cond = self.get_learned_conditioning(cond) # c: string -> [B, T, Context_dim]
        batch_size = len(cond)
        enc_emb = self.sample(cond,batch_size,timesteps=self.num_timesteps)# shape = [batch_size,self.channels,self.mel_dim,self.mel_length]
        xrec = self.decode_first_stage(enc_emb)
        # reconstructions = (xrec + 1)/2 # to mel scale
        # test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
        # savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
        # if not os.path.exists(savedir):
        #     os.makedirs(savedir)

        # file_names = batch['f_name']
        # nfiles = len(file_names)
        # reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
        # for k in range(reconstructions.shape[0]):
        #     b,repeat = k % nfiles, k // nfiles
        #     vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
        #     v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
        #     save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition
        #     np.save(save_img_path,reconstructions[b])
        return None

    def forward(self, x, c, *args, **kwargs):
        '''

        video to audio:

        x (latent): [B, 256 (time), 20]  c (video feat): [B, 32 (time), 512]

        '''
        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() # [B]
        if self.model.conditioning_key is not None:
            assert c is not None
            if self.cond_stage_trainable:
                c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim]
            if self.shorten_cond_schedule:  # TODO: drop this option
                tc = self.cond_ids[t].to(self.device)
                c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
        return self.p_losses(x, c, t, *args, **kwargs)


    def apply_model(self, x_noisy, t, cond, return_ids=False):

        if isinstance(cond, dict):
            # hybrid case, cond is exptected to be a dict
            key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
            cond = {key: cond}
        else:
            if not isinstance(cond, list):
                cond = [cond]
            if self.model.conditioning_key == "concat":
                key = "c_concat"
            elif self.model.conditioning_key == "crossattn":
                key = "c_crossattn"
            else:
                key = "c_film"
            cond = {key: cond}


        x_recon = self.model(x_noisy, t, **cond)

        if isinstance(x_recon, tuple) and not return_ids:
            return x_recon[0]
        else:
            return x_recon

    def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
        return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
               extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)

    def _prior_bpd(self, x_start):
        """

        Get the prior KL term for the variational lower-bound, measured in

        bits-per-dim.

        This term can't be optimized, as it only depends on the encoder.

        :param x_start: the [N x C x ...] tensor of inputs.

        :return: a batch of [N] KL values (in bits), one per batch element.

        """
        batch_size = x_start.shape[0]
        t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
        qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
        kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
        return mean_flat(kl_prior) / np.log(2.0)

    def p_losses(self, x_start, cond, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
        model_output = self.apply_model(x_noisy, t, cond)

        loss_dict = {}
        prefix = 'train' if self.training else 'val'

        if self.parameterization == "x0":
            target = x_start
        elif self.parameterization == "eps":
            target = noise
        else:
            raise NotImplementedError()
        
        mean_dims = list(range(1,len(target.shape)))
        loss_simple = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims)
        loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})

        logvar_t = self.logvar[t.to(self.logvar.device)].to(self.device)
        loss = loss_simple / torch.exp(logvar_t) + logvar_t
        # loss = loss_simple / torch.exp(self.logvar) + self.logvar
        if self.learn_logvar:
            loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
            loss_dict.update({'logvar': self.logvar.data.mean()})

        loss = self.l_simple_weight * loss.mean()

        loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=mean_dims)
        loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
        loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
        loss += (self.original_elbo_weight * loss_vlb)
        loss_dict.update({f'{prefix}/loss': loss})

        return loss, loss_dict

    def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,

                        return_x0=False, score_corrector=None, corrector_kwargs=None):
        t_in = t
        model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)

        if score_corrector is not None:
            assert self.parameterization == "eps"
            model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)

        if return_codebook_ids:
            model_out, logits = model_out

        if self.parameterization == "eps":
            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
        elif self.parameterization == "x0":
            x_recon = model_out
        else:
            raise NotImplementedError()

        if clip_denoised:
            x_recon.clamp_(-1., 1.)
        if quantize_denoised:
            x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        if return_codebook_ids:
            return model_mean, posterior_variance, posterior_log_variance, logits
        elif return_x0:
            return model_mean, posterior_variance, posterior_log_variance, x_recon
        else:
            return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,

                 return_codebook_ids=False, quantize_denoised=False, return_x0=False,

                 temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
        b, *_, device = *x.shape, x.device
        outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
                                       return_codebook_ids=return_codebook_ids,
                                       quantize_denoised=quantize_denoised,
                                       return_x0=return_x0,
                                       score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
        if return_codebook_ids:
            raise DeprecationWarning("Support dropped.")
            model_mean, _, model_log_variance, logits = outputs
        elif return_x0:
            model_mean, _, model_log_variance, x0 = outputs
        else:
            model_mean, _, model_log_variance = outputs

        noise = noise_like(x.shape, device, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))

        if return_codebook_ids:
            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
        if return_x0:
            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
        else:
            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

    @torch.no_grad()
    def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,

                              img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,

                              score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,

                              log_every_t=None):
        if not log_every_t:
            log_every_t = self.log_every_t
        timesteps = self.num_timesteps
        if batch_size is not None:
            b = batch_size if batch_size is not None else shape[0]
            shape = [batch_size] + list(shape)
        else:
            b = batch_size = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=self.device)
        else:
            img = x_T
        intermediates = []
        if cond is not None:
            if isinstance(cond, dict):
                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
            else:
                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]

        if start_T is not None:
            timesteps = min(timesteps, start_T)
        iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
                        total=timesteps) if verbose else reversed(
            range(0, timesteps))
        if type(temperature) == float:
            temperature = [temperature] * timesteps

        for i in iterator:
            ts = torch.full((b,), i, device=self.device, dtype=torch.long)
            if self.shorten_cond_schedule:
                assert self.model.conditioning_key != 'hybrid'
                tc = self.cond_ids[ts].to(cond.device)
                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))


            img, x0_partial = self.p_sample(img, cond, ts,
                                            clip_denoised=self.clip_denoised,
                                            quantize_denoised=quantize_denoised, return_x0=True,
                                            temperature=temperature[i], noise_dropout=noise_dropout,
                                            score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
            if mask is not None:
                assert x0 is not None
                img_orig = self.q_sample(x0, ts)
                img = img_orig * mask + (1. - mask) * img

            if i % log_every_t == 0 or i == timesteps - 1:
                intermediates.append(x0_partial)
            if callback: callback(i)
            if img_callback: img_callback(img, i)
        return img, intermediates

    @torch.no_grad()
    def p_sample_loop(self, cond, shape, return_intermediates=False,

                      x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,

                      mask=None, x0=None, img_callback=None, start_T=None,

                      log_every_t=None):

        if not log_every_t:
            log_every_t = self.log_every_t
        device = self.betas.device
        b = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=device)
        else:
            img = x_T

        intermediates = [img]
        if timesteps is None:
            timesteps = self.num_timesteps

        if start_T is not None:
            timesteps = min(timesteps, start_T)
        iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
            range(0, timesteps))

        if mask is not None:
            assert x0 is not None
            assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match

        for i in iterator:
            ts = torch.full((b,), i, device=device, dtype=torch.long) # num
            if self.shorten_cond_schedule: # False
                assert self.model.conditioning_key != 'hybrid'
                tc = self.cond_ids[ts].to(cond.device)
                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))

            img = self.p_sample(img, cond, ts,
                                clip_denoised=self.clip_denoised, # False
                                quantize_denoised=quantize_denoised) # False
            if mask is not None: # False
                img_orig = self.q_sample(x0, ts)
                img = img_orig * mask + (1. - mask) * img

            if i % log_every_t == 0 or i == timesteps - 1:
                intermediates.append(img)
            if callback: callback(i)
            if img_callback: img_callback(img, i)

        if return_intermediates:
            return img, intermediates
        return img

    @torch.no_grad()
    def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,

               verbose=True, timesteps=None, quantize_denoised=False,

               mask=None, x0=None, shape=None,**kwargs):
        if shape is None:
            if self.channels > 0:
                shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
            else:
                shape = (batch_size, self.mel_dim, self.mel_length)
        if cond is not None:
            if isinstance(cond, dict):
                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
            else:
                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
        return self.p_sample_loop(cond,
                                  shape,
                                  return_intermediates=return_intermediates, x_T=x_T,
                                  verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
                                  mask=mask, x0=x0)

    @torch.no_grad()
    def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):

        if ddim:
            ddim_sampler = DDIMSampler(self)
            shape = (self.channels, self.mel_dim, self.mel_length) if self.channels > 0 else (self.mel_dim, self.mel_length)
            samples, intermediates = ddim_sampler.sample(ddim_steps,batch_size,
                                                        shape,cond,verbose=False,**kwargs)

        else:
            samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
                                                 return_intermediates=True,**kwargs)

        return samples, intermediates


    @torch.no_grad()
    def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,

                   quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=True,

                   plot_diffusion_rows=True, **kwargs):

        use_ddim = ddim_steps is not None

        log = dict()
        z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
                                           return_first_stage_outputs=True,
                                           force_c_encode=True,
                                           return_original_cond=True,
                                           bs=N) # z is latent,c is condition embedding, xc is condition(caption) list
        N = min(x.shape[0], N)
        n_row = min(x.shape[0], n_row)
        log["inputs"] = x if len(x.shape)==4 else x.unsqueeze(1)
        log["reconstruction"] = xrec if len(xrec.shape)==4 else xrec.unsqueeze(1)
        if self.model.conditioning_key is not None:
            if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image":
                xc = self.cond_stage_model.decode(c)
                log["conditioning"] = xc
            elif self.cond_stage_key == "masked_image":
                log["mask"] = c[:, -1, :, :][:, None, :, :]
                xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :])
                log["conditioning"] = xc
            elif self.cond_stage_key in ["caption"]:
                pass
                # xc = log_txt_as_img((256, 256), batch["caption"])
                # log["conditioning"] = xc
            elif self.cond_stage_key == 'class_label':
                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
                log['conditioning'] = xc
            elif isimage(xc):
                log["conditioning"] = xc

        if plot_diffusion_rows:
            # get diffusion row
            diffusion_row = list()
            z_start = z[:n_row]
            for t in range(self.num_timesteps):
                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
                    t = t.to(self.device).long()
                    noise = torch.randn_like(z_start)
                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
                    diffusion_row.append(self.decode_first_stage(z_noisy))
            if len(diffusion_row[0].shape) == 3:
                diffusion_row = [x.unsqueeze(1) for x in diffusion_row]
            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
            log["diffusion_row"] = diffusion_grid

        if sample:
            # get denoise row
            with self.ema_scope("Plotting"):
                samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
                                                         ddim_steps=ddim_steps,eta=ddim_eta)
                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
            x_samples = self.decode_first_stage(samples)
            log["samples"] = x_samples if len(x_samples.shape)==4 else x_samples.unsqueeze(1)
            if plot_denoise_rows:
                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
                log["denoise_row"] = denoise_grid

            if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
                    self.first_stage_model, IdentityFirstStage):
                # also display when quantizing x0 while sampling
                with self.ema_scope("Plotting Quantized Denoised"):
                    samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
                                                             ddim_steps=ddim_steps,eta=ddim_eta,
                                                             quantize_denoised=True)
                    # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
                    #                                      quantize_denoised=True)
                x_samples = self.decode_first_stage(samples.to(self.device))
                log["samples_x0_quantized"] = x_samples if len(x_samples.shape)==4 else x_samples.unsqueeze(1)

            if inpaint:
                # make a simple center square
                b, h, w = z.shape[0], z.shape[2], z.shape[3]
                mask = torch.ones(N, h, w).to(self.device)
                # zeros will be filled in
                mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
                mask = mask[:, None, ...]
                with self.ema_scope("Plotting Inpaint"):

                    samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
                                                ddim_steps=ddim_steps, x0=z[:N], mask=mask)
                x_samples = self.decode_first_stage(samples.to(self.device))
                log["samples_inpainting"] = x_samples
                log["mask_inpainting"] = mask

                # outpaint
                mask = 1 - mask
                with self.ema_scope("Plotting Outpaint"):
                    samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
                                                ddim_steps=ddim_steps, x0=z[:N], mask=mask)
                x_samples = self.decode_first_stage(samples.to(self.device))
                log["samples_outpainting"] = x_samples
                log["mask_outpainting"] = mask

        if plot_progressive_rows:
            with self.ema_scope("Plotting Progressives"):
                shape = (self.channels, self.mel_dim, self.mel_length) if self.channels > 0 else (self.mel_dim, self.mel_length)
                img, progressives = self.progressive_denoising(c,
                                                               shape=shape,
                                                               batch_size=N)
            prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
            log["progressive_row"] = prog_row

        if return_keys:
            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
                return log
            else:
                return {key: log[key] for key in return_keys}
        return log

    def configure_optimizers(self):
        lr = self.learning_rate
        params = list(self.model.parameters())
        if self.cond_stage_trainable:
            print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
            params = params + list(self.cond_stage_model.parameters())
        if self.learn_logvar:
            print('Diffusion model optimizing logvar')
            params.append(self.logvar)
        opt = torch.optim.AdamW(params, lr=lr)
        if self.use_scheduler:
            assert 'target' in self.scheduler_config
            scheduler = instantiate_from_config(self.scheduler_config)

            print("Setting up LambdaLR scheduler...")
            scheduler = [
                {
                    'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
                    'interval': 'step',
                    'frequency': 1
                }]
            return [opt], scheduler
        return opt