File size: 7,308 Bytes
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch as th
import numpy as np
from functools import partial

def expand_t_like_x(t, x):
    """Function to reshape time t to broadcastable dimension of x
    Args:
      t: [batch_dim,], time vector
      x: [batch_dim,...], data point
    """
    dims = [1] * len(x[0].size())
    t = t.view(t.size(0), *dims)
    return t


#################### Coupling Plans ####################

class ICPlan:
    """Linear Coupling Plan"""
    def __init__(self, sigma=0.0):
        self.sigma = sigma

    def compute_alpha_t(self, t):
        """Compute the data coefficient along the path"""
        return t, 1

    def compute_sigma_t(self, t):
        """Compute the noise coefficient along the path"""
        return 1 - t, -1

    def compute_d_alpha_alpha_ratio_t(self, t):
        """Compute the ratio between d_alpha and alpha"""
        return 1 / t

    def compute_drift(self, x, t):
        """We always output sde according to score parametrization; """
        t = expand_t_like_x(t, x)
        alpha_ratio = self.compute_d_alpha_alpha_ratio_t(t)
        sigma_t, d_sigma_t = self.compute_sigma_t(t)
        drift = alpha_ratio * x
        diffusion = alpha_ratio * (sigma_t ** 2) - sigma_t * d_sigma_t

        return -drift, diffusion

    def compute_diffusion(self, x, t, form="constant", norm=1.0):
        """Compute the diffusion term of the SDE
        Args:
          x: [batch_dim, ...], data point
          t: [batch_dim,], time vector
          form: str, form of the diffusion term
          norm: float, norm of the diffusion term
        """
        t = expand_t_like_x(t, x)
        choices = {
            "constant": norm,
            "SBDM": norm * self.compute_drift(x, t)[1],
            "sigma": norm * self.compute_sigma_t(t)[0],
            "linear": norm * (1 - t),
            "decreasing": 0.25 * (norm * th.cos(np.pi * t) + 1) ** 2,
            "inccreasing-decreasing": norm * th.sin(np.pi * t) ** 2,
        }

        try:
            diffusion = choices[form]
        except KeyError:
            raise NotImplementedError(f"Diffusion form {form} not implemented")

        return diffusion

    def get_score_from_velocity(self, velocity, x, t):
        """Wrapper function: transfrom velocity prediction model to score
        Args:
            velocity: [batch_dim, ...] shaped tensor; velocity model output
            x: [batch_dim, ...] shaped tensor; x_t data point
            t: [batch_dim,] time tensor
        """
        t = expand_t_like_x(t, x)
        alpha_t, d_alpha_t = self.compute_alpha_t(t)
        sigma_t, d_sigma_t = self.compute_sigma_t(t)
        mean = x
        reverse_alpha_ratio = alpha_t / d_alpha_t
        var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t
        score = (reverse_alpha_ratio * velocity - mean) / var
        return score

    def get_noise_from_velocity(self, velocity, x, t):
        """Wrapper function: transfrom velocity prediction model to denoiser
        Args:
            velocity: [batch_dim, ...] shaped tensor; velocity model output
            x: [batch_dim, ...] shaped tensor; x_t data point
            t: [batch_dim,] time tensor
        """
        t = expand_t_like_x(t, x)
        alpha_t, d_alpha_t = self.compute_alpha_t(t)
        sigma_t, d_sigma_t = self.compute_sigma_t(t)
        mean = x
        reverse_alpha_ratio = alpha_t / d_alpha_t
        var = reverse_alpha_ratio * d_sigma_t - sigma_t
        noise = (reverse_alpha_ratio * velocity - mean) / var
        return noise

    def get_velocity_from_score(self, score, x, t):
        """Wrapper function: transfrom score prediction model to velocity
        Args:
            score: [batch_dim, ...] shaped tensor; score model output
            x: [batch_dim, ...] shaped tensor; x_t data point
            t: [batch_dim,] time tensor
        """
        t = expand_t_like_x(t, x)
        drift, var = self.compute_drift(x, t)
        velocity = var * score - drift
        return velocity

    def compute_mu_t(self, t, x0, x1):
        """Compute the mean of time-dependent density p_t"""
        t = expand_t_like_x(t, x1)
        alpha_t, _ = self.compute_alpha_t(t)
        sigma_t, _ = self.compute_sigma_t(t)
        if isinstance(x1, (list, tuple)):
            return [
                alpha_t[i] * x1[i] + sigma_t[i] * x0[i]
                for i in range(len(x1))
            ]
        else:
            return alpha_t * x1 + sigma_t * x0

    def compute_xt(self, t, x0, x1):
        """Sample xt from time-dependent density p_t; rng is required"""
        xt = self.compute_mu_t(t, x0, x1)
        return xt

    def compute_ut(self, t, x0, x1, xt):
        """Compute the vector field corresponding to p_t"""
        t = expand_t_like_x(t, x1)
        _, d_alpha_t = self.compute_alpha_t(t)
        _, d_sigma_t = self.compute_sigma_t(t)
        if isinstance(x1, (list, tuple)):
            return [
                d_alpha_t * x1[i] + d_sigma_t * x0[i]
                for i in range(len(x1))
            ]
        else:
            return d_alpha_t * x1 + d_sigma_t * x0

    def plan(self, t, x0, x1):
        xt = self.compute_xt(t, x0, x1)
        ut = self.compute_ut(t, x0, x1, xt)
        return t, xt, ut


class VPCPlan(ICPlan):
    """class for VP path flow matching"""

    def __init__(self, sigma_min=0.1, sigma_max=20.0):
        self.sigma_min = sigma_min
        self.sigma_max = sigma_max
        self.log_mean_coeff = lambda t: -0.25 * ((1 - t) ** 2) * (self.sigma_max - self.sigma_min) - 0.5 * (1 - t) * self.sigma_min
        self.d_log_mean_coeff = lambda t: 0.5 * (1 - t) * (self.sigma_max - self.sigma_min) + 0.5 * self.sigma_min


    def compute_alpha_t(self, t):
        """Compute coefficient of x1"""
        alpha_t = self.log_mean_coeff(t)
        alpha_t = th.exp(alpha_t)
        d_alpha_t = alpha_t * self.d_log_mean_coeff(t)
        return alpha_t, d_alpha_t

    def compute_sigma_t(self, t):
        """Compute coefficient of x0"""
        p_sigma_t = 2 * self.log_mean_coeff(t)
        sigma_t = th.sqrt(1 - th.exp(p_sigma_t))
        d_sigma_t = th.exp(p_sigma_t) * (2 * self.d_log_mean_coeff(t)) / (-2 * sigma_t)
        return sigma_t, d_sigma_t

    def compute_d_alpha_alpha_ratio_t(self, t):
        """Special purposed function for computing numerical stabled d_alpha_t / alpha_t"""
        return self.d_log_mean_coeff(t)

    def compute_drift(self, x, t):
        """Compute the drift term of the SDE"""
        t = expand_t_like_x(t, x)
        beta_t = self.sigma_min + (1 - t) * (self.sigma_max - self.sigma_min)
        return -0.5 * beta_t * x, beta_t / 2


class GVPCPlan(ICPlan):
    def __init__(self, sigma=0.0):
        super().__init__(sigma)

    def compute_alpha_t(self, t):
        """Compute coefficient of x1"""
        alpha_t = th.sin(t * np.pi / 2)
        d_alpha_t = np.pi / 2 * th.cos(t * np.pi / 2)
        return alpha_t, d_alpha_t

    def compute_sigma_t(self, t):
        """Compute coefficient of x0"""
        sigma_t = th.cos(t * np.pi / 2)
        d_sigma_t = -np.pi / 2 * th.sin(t * np.pi / 2)
        return sigma_t, d_sigma_t

    def compute_d_alpha_alpha_ratio_t(self, t):
        """Special purposed function for computing numerical stabled d_alpha_t / alpha_t"""
        return np.pi / (2 * th.tan(t * np.pi / 2))