Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import subprocess | |
# Install flash attention, skipping CUDA build if necessary | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
import argparse, os, sys, glob | |
import pathlib | |
directory = pathlib.Path(os.getcwd()) | |
print(directory) | |
sys.path.append(str(directory)) | |
import torch | |
import numpy as np | |
from omegaconf import OmegaConf | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.plms import PLMSSampler | |
import pandas as pd | |
from tqdm import tqdm | |
import preprocess.n2s_by_openai as n2s | |
from vocoder.bigvgan.models import VocoderBigVGAN | |
import soundfile | |
import math | |
import gradio as gr | |
def load_model_from_config(config, ckpt = None, verbose=True): | |
model = instantiate_from_config(config.model) | |
if ckpt: | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
sd = pl_sd["state_dict"] | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
else: | |
print(f"Note chat no ckpt is loaded !!!") | |
if torch.cuda.is_available(): | |
model.cuda() | |
model.eval() | |
return model | |
class GenSamples: | |
def __init__(self,opt, model,outpath,config, vocoder = None,save_mel = True,save_wav = True) -> None: | |
self.opt = opt | |
self.model = model | |
self.outpath = outpath | |
if save_wav: | |
assert vocoder is not None | |
self.vocoder = vocoder | |
self.save_mel = save_mel | |
self.save_wav = save_wav | |
self.channel_dim = self.model.channels | |
self.config = config | |
def gen_test_sample(self,prompt, mel_name = None,wav_name = None, gt=None, video=None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'} | |
uc = None | |
record_dicts = [] | |
if self.opt['scale'] != 1.0: | |
try: # audiocaps | |
uc = self.model.get_learned_conditioning({'ori_caption': "",'struct_caption': ""}) | |
except: # audioset | |
uc = self.model.get_learned_conditioning(prompt['ori_caption']) | |
for n in range(self.opt['n_iter']): | |
try: # audiocaps | |
c = self.model.get_learned_conditioning(prompt) # shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding | |
except: # audioset | |
c = self.model.get_learned_conditioning(prompt['ori_caption']) | |
if self.channel_dim>0: | |
shape = [self.channel_dim, self.opt['H'], self.opt['W']] # (z_dim, 80//2^x, 848//2^x) | |
else: | |
shape = [1, self.opt['H'], self.opt['W']] | |
x0 = torch.randn(shape, device=self.model.device) | |
if self.opt['scale'] == 1: # w/o cfg | |
sample, _ = self.model.sample(c, 1, timesteps=self.opt['ddim_steps'], x_latent=x0) | |
else: # cfg | |
sample, _ = self.model.sample_cfg(c, self.opt['scale'], uc, 1, timesteps=self.opt['ddim_steps'], x_latent=x0) | |
x_samples_ddim = self.model.decode_first_stage(sample) | |
for idx,spec in enumerate(x_samples_ddim): | |
spec = spec.squeeze(0).cpu().numpy() | |
# print(spec[0]) | |
record_dict = {'caption':prompt['ori_caption'][0]} | |
if self.save_mel: | |
mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy') | |
np.save(mel_path,spec) | |
record_dict['mel_path'] = mel_path | |
if self.save_wav: | |
wav = self.vocoder.vocode(spec) | |
wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav') | |
soundfile.write(wav_path, wav, self.opt['sample_rate']) | |
record_dict['audio_path'] = wav_path | |
record_dicts.append(record_dict) | |
return record_dicts | |
def infer(ori_prompt, ddim_steps, scale, seed): | |
# np.random.seed(seed) | |
# torch.manual_seed(seed) | |
prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>') | |
opt = { | |
'sample_rate': 16000, | |
'outdir': 'outputs/txt2music-samples', | |
'ddim_steps': ddim_steps, | |
'n_iter': 1, | |
'H': 20, | |
'W': 312, | |
'scale': scale, | |
'resume': 'useful_ckpts/music_generation/119.ckpt', | |
'base': 'configs/txt2music-cfm1-cfg-LargeDiT3.yaml', | |
'vocoder_ckpt': 'useful_ckpts/bigvnat', | |
} | |
config = OmegaConf.load(opt['base']) | |
model = load_model_from_config(config, opt['resume']) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
os.makedirs(opt['outdir'], exist_ok=True) | |
vocoder = VocoderBigVGAN(opt['vocoder_ckpt'],device) | |
generator = GenSamples(opt, model,opt['outdir'],config, vocoder,save_mel=False,save_wav=True) | |
with torch.no_grad(): | |
with model.ema_scope(): | |
wav_name = f'{prompt["ori_caption"].strip().replace(" ", "-")}' | |
generator.gen_test_sample(prompt,wav_name=wav_name) | |
file_path = os.path.join(opt['outdir'],wav_name+'_0.wav') | |
print(f"Your samples are ready and waiting four you here: \n{file_path} \nEnjoy.") | |
return file_path | |
def my_inference_function(text_prompt, ddim_steps, scale, seed): | |
file_path = infer(text_prompt, ddim_steps, scale, seed) | |
return file_path | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown("## Make-An-Audio 3: Transforming Text into Audio via Flow-based Large Diffusion Transformers") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt: Input your text here. ") | |
run_button = gr.Button() | |
with gr.Accordion("Advanced options", open=False): | |
ddim_steps = gr.Slider(label="ODE Steps", minimum=1, | |
maximum=50, value=25, step=1) | |
scale = gr.Slider( | |
label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=3.0, step=0.1 | |
) | |
seed = gr.Slider( | |
label="Seed:Change this value (any integer number) will lead to a different generation result.", | |
minimum=0, | |
maximum=2147483647, | |
step=1, | |
value=44, | |
) | |
with gr.Column(): | |
outaudio = gr.Audio() | |
run_button.click(fn=my_inference_function, inputs=[ | |
prompt, ddim_steps, scale, seed], outputs=[outaudio]) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Examples( | |
examples = [['An amateur recording features a steel drum playing in a higher register',25,5,55], | |
['An instrumental song with a caribbean feel, happy mood, and featuring steel pan music, programmed percussion, and bass',25,5,55], | |
['This musical piece features a playful and emotionally melodic male vocal accompanied by piano',25,5,55], | |
['A eerie yet calming experimental electronic track featuring haunting synthesizer strings and pads',25,5,55], | |
['A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques',25,5,55]], | |
inputs = [prompt, ddim_steps, scale, seed], | |
outputs = [outaudio] | |
) | |
with gr.Column(): | |
pass | |
demo.launch() | |
# gradio_interface = gradio.Interface( | |
# fn = my_inference_function, | |
# inputs = "text", | |
# outputs = "audio" | |
# ) | |
# gradio_interface.launch() | |
# text_prompt = 'An amateur recording features a steel drum playing in a higher register' | |
# # text_prompt = 'A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques' | |
# ddim_steps=25 | |
# scale=5.0 | |
# seed=55 | |
# my_inference_function(text_prompt, ddim_steps, scale, seed) | |