lmzjms commited on
Commit
5f898a2
1 Parent(s): b6e32d9

Upload 5 files

Browse files
Files changed (4) hide show
  1. .gitignore +4 -0
  2. README.md +4 -4
  3. app.py +170 -0
  4. requirements.txt +20 -0
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ./useful_ckpts
2
+ *.pyc
3
+ __pycache__
4
+ ./not_finished
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
  title: Make An Audio Inpaint
3
- emoji: 🌍
4
- colorFrom: pink
5
- colorTo: gray
6
  sdk: gradio
7
- sdk_version: 3.21.0
8
  app_file: app.py
9
  pinned: false
10
  ---
 
1
  ---
2
  title: Make An Audio Inpaint
3
+ emoji: 🔥
4
+ colorFrom: green
5
+ colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 3.17.0
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import gradio as gr
4
+ from PIL import Image
5
+ import matplotlib
6
+ from omegaconf import OmegaConf
7
+ from einops import repeat
8
+ import librosa
9
+ from ldm.models.diffusion.ddim import DDIMSampler
10
+ from vocoder.bigvgan.models import VocoderBigVGAN
11
+ from ldm.util import instantiate_from_config
12
+ from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000
13
+
14
+ SAMPLE_RATE = 16000
15
+ cmap_transform = matplotlib.cm.viridis
16
+ torch.set_grad_enabled(False)
17
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
18
+
19
+ def initialize_model(config, ckpt):
20
+ config = OmegaConf.load(config)
21
+ model = instantiate_from_config(config.model)
22
+ model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
23
+
24
+ model = model.to(device)
25
+ print(model.device,device,model.cond_stage_model.device)
26
+ sampler = DDIMSampler(model)
27
+ return sampler
28
+
29
+
30
+ def make_batch_sd(
31
+ mel,
32
+ mask,
33
+ device,
34
+ num_samples=1):
35
+
36
+ mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32)
37
+ mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32)
38
+ masked_mel = (1 - mask) * mel
39
+
40
+ mel = mel * 2 - 1
41
+ mask = mask * 2 - 1
42
+ masked_mel = masked_mel * 2 -1
43
+
44
+ batch = {
45
+ "mel": repeat(mel.to(device=device), "1 ... -> n ...", n=num_samples),
46
+ "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
47
+ "masked_mel": repeat(masked_mel.to(device=device), "1 ... -> n ...", n=num_samples),
48
+ }
49
+ return batch
50
+
51
+ def gen_mel(input_audio):
52
+ sr,ori_wav = input_audio
53
+ print(sr,ori_wav.shape,ori_wav)
54
+
55
+ ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 # order='C'是以C语言格式存储,不用管
56
+ if len(ori_wav.shape)==2:# stereo
57
+ ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
58
+ print(sr,ori_wav.shape,ori_wav)
59
+ ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)
60
+
61
+ mel_len,hop_size = 848,256
62
+ input_len = mel_len * hop_size
63
+ if len(ori_wav) < input_len:
64
+ input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
65
+ else:
66
+ input_wav = ori_wav[:input_len]
67
+
68
+ mel = TRANSFORMS_16000(input_wav)
69
+ return mel
70
+
71
+ def show_mel_fn(input_audio):
72
+ crop_len = 500 # the full mel cannot be showed due to gradio's Image bug when using tool='sketch'
73
+ crop_mel = gen_mel(input_audio)[:,:crop_len]
74
+ color_mel = cmap_transform(crop_mel)
75
+ return Image.fromarray((color_mel*255).astype(np.uint8))
76
+
77
+
78
+ def inpaint(sampler, batch, seed, ddim_steps, num_samples=1, W=512, H=512):
79
+ model = sampler.model
80
+
81
+ prng = np.random.RandomState(seed)
82
+ start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8)
83
+ start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
84
+
85
+ c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"]))
86
+ cc = torch.nn.functional.interpolate(batch["mask"],
87
+ size=c.shape[-2:])
88
+ c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask
89
+
90
+ shape = (c.shape[1]-1,)+c.shape[2:]
91
+ samples_ddim, _ = sampler.sample(S=ddim_steps,
92
+ conditioning=c,
93
+ batch_size=c.shape[0],
94
+ shape=shape,
95
+ verbose=False)
96
+ x_samples_ddim = model.decode_first_stage(samples_ddim)
97
+
98
+
99
+ mask = batch["mask"]# [-1,1]
100
+ mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0)
101
+ mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0)
102
+ predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0)
103
+ inpainted = (1-mask)*mel+mask*predicted_mel
104
+ inpainted = inpainted.cpu().numpy().squeeze()
105
+ inapint_wav = vocoder.vocode(inpainted)
106
+
107
+ return inpainted,inapint_wav
108
+
109
+
110
+ def predict(input_audio,mel_and_mask,ddim_steps,seed):
111
+ show_mel = np.array(mel_and_mask['image'].convert("L"))/255 # 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
112
+ mask = np.array(mel_and_mask["mask"].convert("L"))/255
113
+
114
+ mel_bins,mel_len = 80,848
115
+
116
+ input_mel = gen_mel(input_audio)[:,:mel_len]# 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
117
+ mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0)# 将mask填充到原来的mel的大小
118
+ print(mask.shape,input_mel.shape)
119
+ with torch.no_grad():
120
+ batch = make_batch_sd(input_mel,mask,device,num_samples=1)
121
+ inpainted,gen_wav = inpaint(
122
+ sampler=sampler,
123
+ batch=batch,
124
+ seed=seed,
125
+ ddim_steps=ddim_steps,
126
+ num_samples=1,
127
+ H=mel_bins, W=mel_len
128
+ )
129
+ inpainted = inpainted[:,:show_mel.shape[1]]
130
+ color_mel = cmap_transform(inpainted)
131
+ input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0])
132
+ gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len]
133
+ return Image.fromarray((color_mel*255).astype(np.uint8)),(SAMPLE_RATE,gen_wav)
134
+
135
+
136
+ sampler = initialize_model('./configs/inpaint/txt2audio_args.yaml', './useful_ckpts/inpaint7_epoch00047.ckpt')
137
+ vocoder = VocoderBigVGAN('./vocoder/logs/bigv16k53w',device=device)
138
+
139
+ block = gr.Blocks().queue()
140
+ with block:
141
+ with gr.Row():
142
+ gr.Markdown("## Make-An-Audio Inpainting")
143
+
144
+ with gr.Row():
145
+ with gr.Column():
146
+ input_audio = gr.inputs.Audio()
147
+
148
+ show_button = gr.Button("Show Mel")
149
+
150
+ run_button = gr.Button("Predict Masked Place")
151
+ with gr.Accordion("Advanced options", open=False):
152
+ ddim_steps = gr.Slider(label="Steps", minimum=1,
153
+ maximum=150, value=100, step=1)
154
+ seed = gr.Slider(
155
+ label="Seed",
156
+ minimum=0,
157
+ maximum=2147483647,
158
+ step=1,
159
+ randomize=True,
160
+ )
161
+ with gr.Column():
162
+ show_inpainted = gr.Image(type="pil").style(width=848,height=80)
163
+ outaudio = gr.Audio()
164
+ show_mel = gr.Image(type="pil",tool='sketch')#.style(width=848,height=80) # 加上这个没办法展示完全图片
165
+ show_button.click(fn=show_mel_fn, inputs=[input_audio], outputs=show_mel)
166
+
167
+ run_button.click(fn=predict, inputs=[input_audio,show_mel,ddim_steps,seed], outputs=[show_inpainted,outaudio])
168
+
169
+
170
+ block.launch()
requirements.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu113
2
+ torch
3
+ torch-fidelity==0.3.0
4
+ scipy
5
+ matplotlib
6
+ torchaudio>=0.13.0
7
+ torchvision>=0.14.0
8
+ tqdm
9
+ omegaconf
10
+ einops
11
+ numpy<=1.23.5
12
+ soundfile
13
+ librosa
14
+ pandas
15
+ # transformers
16
+ torchlibrosa
17
+ transformers
18
+ ftfy
19
+ pytorch-lightning==1.5.9
20
+ # -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers