lmzjms commited on
Commit
e4b13fd
1 Parent(s): 12a5bc8

Upload 169 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ldm/__pycache__/util.cpython-38.pyc +0 -0
  2. ldm/__pycache__/util.cpython-39.pyc +0 -0
  3. ldm/data/__pycache__/extract_mel_spectrogram.cpython-38.pyc +0 -0
  4. ldm/data/__pycache__/extract_mel_spectrogram.cpython-39.pyc +0 -0
  5. ldm/data/extract_mel_spectrogram.py +151 -0
  6. ldm/lr_scheduler.py +98 -0
  7. ldm/models/__pycache__/autoencoder.cpython-38.pyc +0 -0
  8. ldm/models/__pycache__/autoencoder.cpython-39.pyc +0 -0
  9. ldm/models/__pycache__/autoencoder_multi.cpython-38.pyc +0 -0
  10. ldm/models/autoencoder.py +474 -0
  11. ldm/models/autoencoder_multi.py +201 -0
  12. ldm/models/diffusion/__init__.py +0 -0
  13. ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
  14. ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
  15. ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc +0 -0
  16. ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc +0 -0
  17. ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc +0 -0
  18. ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc +0 -0
  19. ldm/models/diffusion/__pycache__/ddpm_audio.cpython-38.pyc +0 -0
  20. ldm/models/diffusion/__pycache__/ddpm_audio.cpython-39.pyc +0 -0
  21. ldm/models/diffusion/__pycache__/ddpm_audio_inpaint.cpython-38.pyc +0 -0
  22. ldm/models/diffusion/__pycache__/plms.cpython-38.pyc +0 -0
  23. ldm/models/diffusion/__pycache__/plms.cpython-39.pyc +0 -0
  24. ldm/models/diffusion/classifier.py +267 -0
  25. ldm/models/diffusion/ddim.py +262 -0
  26. ldm/models/diffusion/ddpm.py +1444 -0
  27. ldm/models/diffusion/ddpm_audio.py +1262 -0
  28. ldm/models/diffusion/ddpm_audio_inpaint.py +1081 -0
  29. ldm/models/diffusion/plms.py +236 -0
  30. ldm/modules/__pycache__/attention.cpython-38.pyc +0 -0
  31. ldm/modules/__pycache__/attention.cpython-39.pyc +0 -0
  32. ldm/modules/__pycache__/ema.cpython-38.pyc +0 -0
  33. ldm/modules/__pycache__/ema.cpython-39.pyc +0 -0
  34. ldm/modules/__pycache__/x_transformer.cpython-39.pyc +0 -0
  35. ldm/modules/attention.py +261 -0
  36. ldm/modules/diffusionmodules/__init__.py +0 -0
  37. ldm/modules/diffusionmodules/__pycache__/__init__.cpython-38.pyc +0 -0
  38. ldm/modules/diffusionmodules/__pycache__/__init__.cpython-39.pyc +0 -0
  39. ldm/modules/diffusionmodules/__pycache__/custom_openaimodel.cpython-38.pyc +0 -0
  40. ldm/modules/diffusionmodules/__pycache__/model.cpython-38.pyc +0 -0
  41. ldm/modules/diffusionmodules/__pycache__/model.cpython-39.pyc +0 -0
  42. ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-38.pyc +0 -0
  43. ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-39.pyc +0 -0
  44. ldm/modules/diffusionmodules/__pycache__/util.cpython-38.pyc +0 -0
  45. ldm/modules/diffusionmodules/__pycache__/util.cpython-39.pyc +0 -0
  46. ldm/modules/diffusionmodules/custom_openaimodel.py +368 -0
  47. ldm/modules/diffusionmodules/model.py +835 -0
  48. ldm/modules/diffusionmodules/openaimodel.py +963 -0
  49. ldm/modules/diffusionmodules/util.py +267 -0
  50. ldm/modules/discriminator/__pycache__/model.cpython-38.pyc +0 -0
ldm/__pycache__/util.cpython-38.pyc ADDED
Binary file (5.1 kB). View file
 
ldm/__pycache__/util.cpython-39.pyc ADDED
Binary file (5.14 kB). View file
 
ldm/data/__pycache__/extract_mel_spectrogram.cpython-38.pyc ADDED
Binary file (5.42 kB). View file
 
ldm/data/__pycache__/extract_mel_spectrogram.cpython-39.pyc ADDED
Binary file (7.44 kB). View file
 
ldm/data/extract_mel_spectrogram.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import os.path as P
4
+ from copy import deepcopy
5
+ from functools import partial
6
+ from glob import glob
7
+ from multiprocessing import Pool
8
+ from pathlib import Path
9
+
10
+ import librosa
11
+ import numpy as np
12
+ import torchvision
13
+
14
+
15
+ class MelSpectrogram(object):
16
+ def __init__(self, sr, nfft, fmin, fmax, nmels, hoplen, spec_power, inverse=False):
17
+ self.sr = sr
18
+ self.nfft = nfft
19
+ self.fmin = fmin
20
+ self.fmax = fmax
21
+ self.nmels = nmels
22
+ self.hoplen = hoplen
23
+ self.spec_power = spec_power
24
+ self.inverse = inverse
25
+
26
+ self.mel_basis = librosa.filters.mel(sr=sr, n_fft=nfft, fmin=fmin, fmax=fmax, n_mels=nmels)
27
+
28
+ def __call__(self, x):
29
+ if self.inverse:
30
+ spec = librosa.feature.inverse.mel_to_stft(
31
+ x, sr=self.sr, n_fft=self.nfft, fmin=self.fmin, fmax=self.fmax, power=self.spec_power
32
+ )
33
+ wav = librosa.griffinlim(spec, hop_length=self.hoplen)
34
+ return wav
35
+ else:
36
+ spec = np.abs(librosa.stft(x, n_fft=self.nfft, hop_length=self.hoplen)) ** self.spec_power
37
+ mel_spec = np.dot(self.mel_basis, spec)
38
+ return mel_spec
39
+
40
+ class LowerThresh(object):
41
+ def __init__(self, min_val, inverse=False):
42
+ self.min_val = min_val
43
+ self.inverse = inverse
44
+
45
+ def __call__(self, x):
46
+ if self.inverse:
47
+ return x
48
+ else:
49
+ return np.maximum(self.min_val, x)
50
+
51
+ class Add(object):
52
+ def __init__(self, val, inverse=False):
53
+ self.inverse = inverse
54
+ self.val = val
55
+
56
+ def __call__(self, x):
57
+ if self.inverse:
58
+ return x - self.val
59
+ else:
60
+ return x + self.val
61
+
62
+ class Subtract(Add):
63
+ def __init__(self, val, inverse=False):
64
+ self.inverse = inverse
65
+ self.val = val
66
+
67
+ def __call__(self, x):
68
+ if self.inverse:
69
+ return x + self.val
70
+ else:
71
+ return x - self.val
72
+
73
+ class Multiply(object):
74
+ def __init__(self, val, inverse=False) -> None:
75
+ self.val = val
76
+ self.inverse = inverse
77
+
78
+ def __call__(self, x):
79
+ if self.inverse:
80
+ return x / self.val
81
+ else:
82
+ return x * self.val
83
+
84
+ class Divide(Multiply):
85
+ def __init__(self, val, inverse=False):
86
+ self.inverse = inverse
87
+ self.val = val
88
+
89
+ def __call__(self, x):
90
+ if self.inverse:
91
+ return x * self.val
92
+ else:
93
+ return x / self.val
94
+
95
+ class Log10(object):
96
+ def __init__(self, inverse=False):
97
+ self.inverse = inverse
98
+
99
+ def __call__(self, x):
100
+ if self.inverse:
101
+ return 10 ** x
102
+ else:
103
+ return np.log10(x)
104
+
105
+ class Clip(object):
106
+ def __init__(self, min_val, max_val, inverse=False):
107
+ self.min_val = min_val
108
+ self.max_val = max_val
109
+ self.inverse = inverse
110
+
111
+ def __call__(self, x):
112
+ if self.inverse:
113
+ return x
114
+ else:
115
+ return np.clip(x, self.min_val, self.max_val)
116
+
117
+ class TrimSpec(object):
118
+ def __init__(self, max_len, inverse=False):
119
+ self.max_len = max_len
120
+ self.inverse = inverse
121
+
122
+ def __call__(self, x):
123
+ if self.inverse:
124
+ return x
125
+ else:
126
+ return x[:, :self.max_len]
127
+
128
+ class MaxNorm(object):
129
+ def __init__(self, inverse=False):
130
+ self.inverse = inverse
131
+ self.eps = 1e-10
132
+
133
+ def __call__(self, x):
134
+ if self.inverse:
135
+ return x
136
+ else:
137
+ return x / (x.max() + self.eps)
138
+
139
+
140
+ TRANSFORMS_16000 = torchvision.transforms.Compose([
141
+ MelSpectrogram(sr=16000, nfft=1024, fmin=125, fmax=7600, nmels=80, hoplen=1024//4, spec_power=1),
142
+ LowerThresh(1e-5),
143
+ Log10(),
144
+ Multiply(20),
145
+ Subtract(20),
146
+ Add(100),
147
+ Divide(100),
148
+ Clip(0, 1.0)
149
+ # TrimSpec(860)
150
+ ])
151
+
ldm/lr_scheduler.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class LambdaWarmUpCosineScheduler:
5
+ """
6
+ note: use with a base_lr of 1.0
7
+ """
8
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
+ self.lr_warm_up_steps = warm_up_steps
10
+ self.lr_start = lr_start
11
+ self.lr_min = lr_min
12
+ self.lr_max = lr_max
13
+ self.lr_max_decay_steps = max_decay_steps
14
+ self.last_lr = 0.
15
+ self.verbosity_interval = verbosity_interval
16
+
17
+ def schedule(self, n, **kwargs):
18
+ if self.verbosity_interval > 0:
19
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
+ if n < self.lr_warm_up_steps:
21
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
+ self.last_lr = lr
23
+ return lr
24
+ else:
25
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
+ t = min(t, 1.0)
27
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
+ 1 + np.cos(t * np.pi))
29
+ self.last_lr = lr
30
+ return lr
31
+
32
+ def __call__(self, n, **kwargs):
33
+ return self.schedule(n,**kwargs)
34
+
35
+
36
+ class LambdaWarmUpCosineScheduler2:
37
+ """
38
+ supports repeated iterations, configurable via lists
39
+ note: use with a base_lr of 1.0.
40
+ """
41
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
+ self.lr_warm_up_steps = warm_up_steps
44
+ self.f_start = f_start
45
+ self.f_min = f_min
46
+ self.f_max = f_max
47
+ self.cycle_lengths = cycle_lengths
48
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
+ self.last_f = 0.
50
+ self.verbosity_interval = verbosity_interval
51
+
52
+ def find_in_interval(self, n):
53
+ interval = 0
54
+ for cl in self.cum_cycles[1:]:
55
+ if n <= cl:
56
+ return interval
57
+ interval += 1
58
+
59
+ def schedule(self, n, **kwargs):
60
+ cycle = self.find_in_interval(n)
61
+ n = n - self.cum_cycles[cycle]
62
+ if self.verbosity_interval > 0:
63
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
+ f"current cycle {cycle}")
65
+ if n < self.lr_warm_up_steps[cycle]:
66
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
+ self.last_f = f
68
+ return f
69
+ else:
70
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
+ t = min(t, 1.0)
72
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
+ 1 + np.cos(t * np.pi))
74
+ self.last_f = f
75
+ return f
76
+
77
+ def __call__(self, n, **kwargs):
78
+ return self.schedule(n, **kwargs)
79
+
80
+
81
+ class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
+
83
+ def schedule(self, n, **kwargs):
84
+ cycle = self.find_in_interval(n)
85
+ n = n - self.cum_cycles[cycle]
86
+ if self.verbosity_interval > 0:
87
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
88
+ f"current cycle {cycle}")
89
+
90
+ if n < self.lr_warm_up_steps[cycle]:
91
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
+ self.last_f = f
93
+ return f
94
+ else:
95
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
+ self.last_f = f
97
+ return f
98
+
ldm/models/__pycache__/autoencoder.cpython-38.pyc ADDED
Binary file (14.8 kB). View file
 
ldm/models/__pycache__/autoencoder.cpython-39.pyc ADDED
Binary file (14.8 kB). View file
 
ldm/models/__pycache__/autoencoder_multi.cpython-38.pyc ADDED
Binary file (14.8 kB). View file
 
ldm/models/autoencoder.py ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import pytorch_lightning as pl
4
+ import torch.nn.functional as F
5
+ from contextlib import contextmanager
6
+ from packaging import version
7
+ import numpy as np
8
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
9
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
10
+ from torch.optim.lr_scheduler import LambdaLR
11
+ from ldm.util import instantiate_from_config
12
+ # from icecream import ic
13
+
14
+ class VQModel(pl.LightningModule):
15
+ def __init__(self,
16
+ ddconfig,
17
+ lossconfig,
18
+ n_embed,
19
+ embed_dim,
20
+ ckpt_path=None,
21
+ ignore_keys=[],
22
+ image_key="image",
23
+ colorize_nlabels=None,
24
+ monitor=None,
25
+ batch_resize_range=None,
26
+ scheduler_config=None,
27
+ lr_g_factor=1.0,
28
+ remap=None,
29
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
30
+ use_ema=False
31
+ ):
32
+ super().__init__()
33
+ self.embed_dim = embed_dim
34
+ self.n_embed = n_embed
35
+ self.image_key = image_key
36
+ self.encoder = Encoder(**ddconfig)
37
+ self.decoder = Decoder(**ddconfig)
38
+ self.loss = instantiate_from_config(lossconfig)
39
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
40
+ remap=remap,
41
+ sane_index_shape=sane_index_shape)
42
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
43
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
44
+ if colorize_nlabels is not None:
45
+ assert type(colorize_nlabels)==int
46
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
47
+ if monitor is not None:
48
+ self.monitor = monitor
49
+ self.batch_resize_range = batch_resize_range
50
+ if self.batch_resize_range is not None:
51
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
52
+
53
+ self.use_ema = use_ema
54
+ if self.use_ema:
55
+ self.model_ema = LitEma(self)
56
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
57
+
58
+ if ckpt_path is not None:
59
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
60
+ self.scheduler_config = scheduler_config
61
+ self.lr_g_factor = lr_g_factor
62
+
63
+ @contextmanager
64
+ def ema_scope(self, context=None):
65
+ if self.use_ema:
66
+ self.model_ema.store(self.parameters())
67
+ self.model_ema.copy_to(self)
68
+ if context is not None:
69
+ print(f"{context}: Switched to EMA weights")
70
+ try:
71
+ yield None
72
+ finally:
73
+ if self.use_ema:
74
+ self.model_ema.restore(self.parameters())
75
+ if context is not None:
76
+ print(f"{context}: Restored training weights")
77
+
78
+ def init_from_ckpt(self, path, ignore_keys=list()):
79
+ sd = torch.load(path, map_location="cpu")["state_dict"]
80
+ keys = list(sd.keys())
81
+ for k in keys:
82
+ for ik in ignore_keys:
83
+ if k.startswith(ik):
84
+ print("Deleting key {} from state_dict.".format(k))
85
+ del sd[k]
86
+ missing, unexpected = self.load_state_dict(sd, strict=False)
87
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
88
+ if len(missing) > 0:
89
+ print(f"Missing Keys: {missing}")
90
+ print(f"Unexpected Keys: {unexpected}")
91
+
92
+ def on_train_batch_end(self, *args, **kwargs):
93
+ if self.use_ema:
94
+ self.model_ema(self)
95
+
96
+ def encode(self, x):
97
+ h = self.encoder(x)
98
+ h = self.quant_conv(h)
99
+ quant, emb_loss, info = self.quantize(h)
100
+ return quant, emb_loss, info
101
+
102
+ def encode_to_prequant(self, x):
103
+ h = self.encoder(x)
104
+ h = self.quant_conv(h)
105
+ return h
106
+
107
+ def decode(self, quant):
108
+ quant = self.post_quant_conv(quant)
109
+ dec = self.decoder(quant)
110
+ return dec
111
+
112
+ def decode_code(self, code_b):
113
+ quant_b = self.quantize.embed_code(code_b)
114
+ dec = self.decode(quant_b)
115
+ return dec
116
+
117
+ def forward(self, input, return_pred_indices=False):
118
+ quant, diff, (_,_,ind) = self.encode(input)
119
+ dec = self.decode(quant)
120
+ if return_pred_indices:
121
+ return dec, diff, ind
122
+ return dec, diff
123
+
124
+ def get_input(self, batch, k):
125
+ x = batch[k]
126
+ if len(x.shape) == 3:
127
+ x = x[..., None]
128
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
129
+ if self.batch_resize_range is not None:
130
+ lower_size = self.batch_resize_range[0]
131
+ upper_size = self.batch_resize_range[1]
132
+ if self.global_step <= 4:
133
+ # do the first few batches with max size to avoid later oom
134
+ new_resize = upper_size
135
+ else:
136
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
137
+ if new_resize != x.shape[2]:
138
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
139
+ x = x.detach()
140
+ return x
141
+
142
+ def training_step(self, batch, batch_idx, optimizer_idx):
143
+ # https://github.com/pytorch/pytorch/issues/37142
144
+ # try not to fool the heuristics
145
+ x = self.get_input(batch, self.image_key)
146
+ xrec, qloss, ind = self(x, return_pred_indices=True)
147
+
148
+ if optimizer_idx == 0:
149
+ # autoencode
150
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
151
+ last_layer=self.get_last_layer(), split="train",
152
+ predicted_indices=ind)
153
+
154
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
155
+ return aeloss
156
+
157
+ if optimizer_idx == 1:
158
+ # discriminator
159
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
160
+ last_layer=self.get_last_layer(), split="train")
161
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
162
+ return discloss
163
+
164
+ def validation_step(self, batch, batch_idx):
165
+ log_dict = self._validation_step(batch, batch_idx)
166
+ with self.ema_scope():
167
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
168
+ return log_dict
169
+
170
+ def _validation_step(self, batch, batch_idx, suffix=""):
171
+ x = self.get_input(batch, self.image_key)
172
+ xrec, qloss, ind = self(x, return_pred_indices=True)
173
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
174
+ self.global_step,
175
+ last_layer=self.get_last_layer(),
176
+ split="val"+suffix,
177
+ predicted_indices=ind
178
+ )
179
+
180
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
181
+ self.global_step,
182
+ last_layer=self.get_last_layer(),
183
+ split="val"+suffix,
184
+ predicted_indices=ind
185
+ )
186
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
187
+ self.log(f"val{suffix}/rec_loss", rec_loss,
188
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
189
+ self.log(f"val{suffix}/aeloss", aeloss,
190
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
191
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
192
+ del log_dict_ae[f"val{suffix}/rec_loss"]
193
+ self.log_dict(log_dict_ae)
194
+ self.log_dict(log_dict_disc)
195
+ return self.log_dict
196
+
197
+ def test_step(self, batch, batch_idx):
198
+ x = self.get_input(batch, self.image_key)
199
+ xrec, qloss, ind = self(x, return_pred_indices=True)
200
+ reconstructions = (xrec + 1)/2 # to mel scale
201
+ test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
202
+ savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
203
+ if not os.path.exists(savedir):
204
+ os.makedirs(savedir)
205
+
206
+ file_names = batch['f_name']
207
+ # print(f"reconstructions.shape:{reconstructions.shape}",file_names)
208
+ reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
209
+ for b in range(reconstructions.shape[0]):
210
+ vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
211
+ v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
212
+ save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy')
213
+ np.save(save_img_path,reconstructions[b])
214
+
215
+ return None
216
+
217
+ def configure_optimizers(self):
218
+ lr_d = self.learning_rate
219
+ lr_g = self.lr_g_factor*self.learning_rate
220
+ print("lr_d", lr_d)
221
+ print("lr_g", lr_g)
222
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
223
+ list(self.decoder.parameters())+
224
+ list(self.quantize.parameters())+
225
+ list(self.quant_conv.parameters())+
226
+ list(self.post_quant_conv.parameters()),
227
+ lr=lr_g, betas=(0.5, 0.9))
228
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
229
+ lr=lr_d, betas=(0.5, 0.9))
230
+
231
+ if self.scheduler_config is not None:
232
+ scheduler = instantiate_from_config(self.scheduler_config)
233
+
234
+ print("Setting up LambdaLR scheduler...")
235
+ scheduler = [
236
+ {
237
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
238
+ 'interval': 'step',
239
+ 'frequency': 1
240
+ },
241
+ {
242
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
243
+ 'interval': 'step',
244
+ 'frequency': 1
245
+ },
246
+ ]
247
+ return [opt_ae, opt_disc], scheduler
248
+ return [opt_ae, opt_disc], []
249
+
250
+ def get_last_layer(self):
251
+ return self.decoder.conv_out.weight
252
+
253
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
254
+ log = dict()
255
+ x = self.get_input(batch, self.image_key)
256
+ x = x.to(self.device)
257
+ if only_inputs:
258
+ log["inputs"] = x
259
+ return log
260
+ xrec, _ = self(x)
261
+ if x.shape[1] > 3:
262
+ # colorize with random projection
263
+ assert xrec.shape[1] > 3
264
+ x = self.to_rgb(x)
265
+ xrec = self.to_rgb(xrec)
266
+ log["inputs"] = x
267
+ log["reconstructions"] = xrec
268
+ if plot_ema:
269
+ with self.ema_scope():
270
+ xrec_ema, _ = self(x)
271
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
272
+ log["reconstructions_ema"] = xrec_ema
273
+ return log
274
+
275
+ def to_rgb(self, x):
276
+ assert self.image_key == "segmentation"
277
+ if not hasattr(self, "colorize"):
278
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
279
+ x = F.conv2d(x, weight=self.colorize)
280
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
281
+ return x
282
+
283
+
284
+ class VQModelInterface(VQModel):
285
+ def __init__(self, embed_dim, *args, **kwargs):
286
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
287
+ self.embed_dim = embed_dim
288
+
289
+ def encode(self, x):# VQModel的quantize写在encoder里,VQModelInterface则将其写在decoder里
290
+ h = self.encoder(x)
291
+ h = self.quant_conv(h)
292
+ return h
293
+
294
+ def decode(self, h, force_not_quantize=False):
295
+ # also go through quantization layer
296
+ if not force_not_quantize:
297
+ quant, emb_loss, info = self.quantize(h)
298
+ else:
299
+ quant = h
300
+ quant = self.post_quant_conv(quant)
301
+ dec = self.decoder(quant)
302
+ return dec
303
+
304
+
305
+ class AutoencoderKL(pl.LightningModule):
306
+ def __init__(self,
307
+ ddconfig,
308
+ lossconfig,
309
+ embed_dim,
310
+ ckpt_path=None,
311
+ ignore_keys=[],
312
+ image_key="image",
313
+ colorize_nlabels=None,
314
+ monitor=None,
315
+ ):
316
+ super().__init__()
317
+ self.image_key = image_key
318
+ self.encoder = Encoder(**ddconfig)
319
+ self.decoder = Decoder(**ddconfig)
320
+ self.loss = instantiate_from_config(lossconfig)
321
+ assert ddconfig["double_z"]
322
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
323
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
324
+ self.embed_dim = embed_dim
325
+ if colorize_nlabels is not None:
326
+ assert type(colorize_nlabels)==int
327
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
328
+ if monitor is not None:
329
+ self.monitor = monitor
330
+ if ckpt_path is not None:
331
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
332
+ # self.automatic_optimization = False # hjw for debug
333
+
334
+ def init_from_ckpt(self, path, ignore_keys=list()):
335
+ sd = torch.load(path, map_location="cpu")["state_dict"]
336
+ keys = list(sd.keys())
337
+ for k in keys:
338
+ for ik in ignore_keys:
339
+ if k.startswith(ik):
340
+ print("Deleting key {} from state_dict.".format(k))
341
+ del sd[k]
342
+ self.load_state_dict(sd, strict=False)
343
+ print(f"Restored from {path}")
344
+
345
+ def encode(self, x):
346
+ h = self.encoder(x)
347
+ moments = self.quant_conv(h)
348
+ posterior = DiagonalGaussianDistribution(moments)
349
+ return posterior
350
+
351
+ def decode(self, z):
352
+ z = self.post_quant_conv(z)
353
+ dec = self.decoder(z)
354
+ return dec
355
+
356
+ def forward(self, input, sample_posterior=True):
357
+ posterior = self.encode(input)
358
+ if sample_posterior:
359
+ z = posterior.sample()
360
+ else:
361
+ z = posterior.mode()
362
+ dec = self.decode(z)
363
+ return dec, posterior
364
+
365
+ def get_input(self, batch, k):
366
+ x = batch[k]
367
+ if len(x.shape) == 3:
368
+ x = x[..., None]
369
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
370
+ return x
371
+
372
+ def training_step(self, batch, batch_idx, optimizer_idx):
373
+ inputs = self.get_input(batch, self.image_key)
374
+ reconstructions, posterior = self(inputs)
375
+
376
+ if optimizer_idx == 0:
377
+ # train encoder+decoder+logvar
378
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
379
+ last_layer=self.get_last_layer(), split="train")
380
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
381
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
382
+ return aeloss
383
+
384
+ if optimizer_idx == 1:
385
+ # train the discriminator
386
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
387
+ last_layer=self.get_last_layer(), split="train")
388
+
389
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
390
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
391
+ return discloss
392
+
393
+ def validation_step(self, batch, batch_idx):
394
+ # self.log_images(batch,only_inputs=False,save_dir='mel_result_ae13_26/fake_class')
395
+ return self.log_dict
396
+
397
+ def test_step(self, batch, batch_idx):
398
+ test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
399
+ savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
400
+ os.makedirs(savedir,exist_ok=True)
401
+ inputs = self.get_input(batch, self.image_key)# inputs shape:(b,c,mel_len,T) or (b,c,h,w)
402
+ # ic(inputs.shape)
403
+ # inputs = inputs[...,:624]
404
+ # ic(inputs.shape)
405
+ xrec, posterior = self(inputs)# reconstructions:(b,c,mel_len,T) or (b,c,h,w)
406
+ file_names = batch['f_name']
407
+ # print(f"reconstructions.shape:{reconstructions.shape}",file_names)
408
+ for b in range(len(file_names)):
409
+ rcon = (xrec[b].squeeze().detach().cpu().numpy() + 1) / 2 # to mel scale,squeeze channel dim
410
+ vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
411
+ v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
412
+ save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy')
413
+ np.save(save_img_path,rcon)
414
+
415
+ return None
416
+
417
+ def configure_optimizers(self):
418
+ lr = self.learning_rate
419
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
420
+ list(self.decoder.parameters())+
421
+ list(self.quant_conv.parameters())+
422
+ list(self.post_quant_conv.parameters()),
423
+ lr=lr, betas=(0.5, 0.9))
424
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
425
+ lr=lr, betas=(0.5, 0.9))
426
+ return [opt_ae, opt_disc], []
427
+
428
+ def get_last_layer(self):
429
+ return self.decoder.conv_out.weight
430
+
431
+ @torch.no_grad()
432
+ def log_images(self, batch, only_inputs=False,save_dir = 'mel_result_ae13_26_debug/fake_class', **kwargs): # 在main.py的on_validation_batch_end中调用
433
+ log = dict()
434
+ x = self.get_input(batch, self.image_key)
435
+ x = x.to(self.device)
436
+ if not only_inputs:
437
+ xrec, posterior = self(x)
438
+ if x.shape[1] > 3:
439
+ # colorize with random projection
440
+ assert xrec.shape[1] > 3
441
+ x = self.to_rgb(x)
442
+ xrec = self.to_rgb(xrec)
443
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
444
+ log["reconstructions"] = xrec
445
+ log["inputs"] = x
446
+ return log
447
+
448
+ def to_rgb(self, x):
449
+ assert self.image_key == "segmentation"
450
+ if not hasattr(self, "colorize"):
451
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
452
+ x = F.conv2d(x, weight=self.colorize)
453
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
454
+ return x
455
+
456
+
457
+ class IdentityFirstStage(torch.nn.Module):
458
+ def __init__(self, *args, vq_interface=False, **kwargs):
459
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
460
+ super().__init__()
461
+
462
+ def encode(self, x, *args, **kwargs):
463
+ return x
464
+
465
+ def decode(self, x, *args, **kwargs):
466
+ return x
467
+
468
+ def quantize(self, x, *args, **kwargs):
469
+ if self.vq_interface:
470
+ return x, None, [None, None, None]
471
+ return x
472
+
473
+ def forward(self, x, *args, **kwargs):
474
+ return x
ldm/models/autoencoder_multi.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ 与autoencoder.py的区别在于,autoencoder.py计算loss时只有一个discriminator,而此处又多了个multiwindowDiscriminator,所以优化器
3
+ 优化的参数改为:
4
+ opt_disc = torch.optim.Adam(list(self.loss.discriminator.parameters()) + list(self.loss.discriminator_multi.parameters()),
5
+ lr=lr, betas=(0.5, 0.9))
6
+ """
7
+
8
+ import os
9
+ import torch
10
+ import pytorch_lightning as pl
11
+ import torch.nn.functional as F
12
+ from contextlib import contextmanager
13
+
14
+ from packaging import version
15
+ import numpy as np
16
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
17
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
18
+ from torch.optim.lr_scheduler import LambdaLR
19
+ from ldm.util import instantiate_from_config
20
+
21
+
22
+
23
+ class AutoencoderKL(pl.LightningModule):
24
+ def __init__(self,
25
+ ddconfig,
26
+ lossconfig,
27
+ embed_dim,
28
+ ckpt_path=None,
29
+ ignore_keys=[],
30
+ image_key="image",
31
+ colorize_nlabels=None,
32
+ monitor=None,
33
+ ):
34
+ super().__init__()
35
+ self.image_key = image_key
36
+ self.encoder = Encoder(**ddconfig)
37
+ self.decoder = Decoder(**ddconfig)
38
+ self.loss = instantiate_from_config(lossconfig)
39
+ assert ddconfig["double_z"]
40
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
41
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
42
+ self.embed_dim = embed_dim
43
+ if colorize_nlabels is not None:
44
+ assert type(colorize_nlabels)==int
45
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
46
+ if monitor is not None:
47
+ self.monitor = monitor
48
+ if ckpt_path is not None:
49
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
50
+
51
+ def init_from_ckpt(self, path, ignore_keys=list()):
52
+ sd = torch.load(path, map_location="cpu")["state_dict"]
53
+ keys = list(sd.keys())
54
+ for k in keys:
55
+ for ik in ignore_keys:
56
+ if k.startswith(ik):
57
+ print("Deleting key {} from state_dict.".format(k))
58
+ del sd[k]
59
+ self.load_state_dict(sd, strict=False)
60
+ print(f"Restored from {path}")
61
+
62
+ def encode(self, x):
63
+ h = self.encoder(x)
64
+ moments = self.quant_conv(h)
65
+ posterior = DiagonalGaussianDistribution(moments)
66
+ return posterior
67
+
68
+ def decode(self, z):
69
+ z = self.post_quant_conv(z)
70
+ dec = self.decoder(z)
71
+ return dec
72
+
73
+ def forward(self, input, sample_posterior=True):
74
+ posterior = self.encode(input)
75
+ if sample_posterior:
76
+ z = posterior.sample()
77
+ else:
78
+ z = posterior.mode()
79
+ dec = self.decode(z)
80
+ return dec, posterior
81
+
82
+ def get_input(self, batch, k):
83
+ x = batch[k]
84
+ if len(x.shape) == 3:
85
+ x = x[..., None]
86
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
87
+ return x
88
+
89
+ def training_step(self, batch, batch_idx, optimizer_idx):
90
+ inputs = self.get_input(batch, self.image_key)
91
+ reconstructions, posterior = self(inputs)
92
+
93
+ if optimizer_idx == 0:
94
+ # train encoder+decoder+logvar
95
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
96
+ last_layer=self.get_last_layer(), split="train")
97
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
98
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
99
+ return aeloss
100
+
101
+ if optimizer_idx == 1:
102
+ # train the discriminator
103
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
104
+ last_layer=self.get_last_layer(), split="train")
105
+
106
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
107
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
108
+ return discloss
109
+
110
+ def validation_step(self, batch, batch_idx):
111
+ inputs = self.get_input(batch, self.image_key)
112
+ reconstructions, posterior = self(inputs)
113
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
114
+ last_layer=self.get_last_layer(), split="val")
115
+
116
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
117
+ last_layer=self.get_last_layer(), split="val")
118
+
119
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
120
+ self.log_dict(log_dict_ae)
121
+ self.log_dict(log_dict_disc)
122
+ return self.log_dict
123
+
124
+ def test_step(self, batch, batch_idx):
125
+ inputs = self.get_input(batch, self.image_key)# inputs shape:(b,c,mel_len,T) or (b,c,h,w)
126
+ reconstructions, posterior = self(inputs)# reconstructions:(b,c,mel_len,T) or (b,c,h,w)
127
+ reconstructions = (reconstructions + 1)/2 # to mel scale
128
+ test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
129
+ savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
130
+ if not os.path.exists(savedir):
131
+ os.makedirs(savedir)
132
+
133
+ file_names = batch['f_name']
134
+ # print(f"reconstructions.shape:{reconstructions.shape}",file_names)
135
+ reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
136
+ for b in range(reconstructions.shape[0]):
137
+ vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
138
+ v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
139
+ save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}.npy')
140
+ np.save(save_img_path,reconstructions[b])
141
+
142
+ return None
143
+
144
+ def configure_optimizers(self):
145
+ lr = self.learning_rate
146
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
147
+ list(self.decoder.parameters())+
148
+ list(self.quant_conv.parameters())+
149
+ list(self.post_quant_conv.parameters()),
150
+ lr=lr, betas=(0.5, 0.9))
151
+ opt_disc = torch.optim.Adam(list(self.loss.discriminator.parameters()) + list(self.loss.discriminator_multi.parameters()),
152
+ lr=lr, betas=(0.5, 0.9))
153
+ return [opt_ae, opt_disc], []
154
+
155
+ def get_last_layer(self):
156
+ return self.decoder.conv_out.weight
157
+
158
+ @torch.no_grad()
159
+ def log_images(self, batch, only_inputs=False, **kwargs):
160
+ log = dict()
161
+ x = self.get_input(batch, self.image_key)
162
+ x = x.to(self.device)
163
+ if not only_inputs:
164
+ xrec, posterior = self(x)
165
+ if x.shape[1] > 3:
166
+ # colorize with random projection
167
+ assert xrec.shape[1] > 3
168
+ x = self.to_rgb(x)
169
+ xrec = self.to_rgb(xrec)
170
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
171
+ log["reconstructions"] = xrec
172
+ log["inputs"] = x
173
+ return log
174
+
175
+ def to_rgb(self, x):
176
+ assert self.image_key == "segmentation"
177
+ if not hasattr(self, "colorize"):
178
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
179
+ x = F.conv2d(x, weight=self.colorize)
180
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
181
+ return x
182
+
183
+
184
+ class IdentityFirstStage(torch.nn.Module):
185
+ def __init__(self, *args, vq_interface=False, **kwargs):
186
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
187
+ super().__init__()
188
+
189
+ def encode(self, x, *args, **kwargs):
190
+ return x
191
+
192
+ def decode(self, x, *args, **kwargs):
193
+ return x
194
+
195
+ def quantize(self, x, *args, **kwargs):
196
+ if self.vq_interface:
197
+ return x, None, [None, None, None]
198
+ return x
199
+
200
+ def forward(self, x, *args, **kwargs):
201
+ return x
ldm/models/diffusion/__init__.py ADDED
File without changes
ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (173 Bytes). View file
 
ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (152 Bytes). View file
 
ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc ADDED
Binary file (7.48 kB). View file
 
ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc ADDED
Binary file (7.4 kB). View file
 
ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc ADDED
Binary file (44 kB). View file
 
ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc ADDED
Binary file (44 kB). View file
 
ldm/models/diffusion/__pycache__/ddpm_audio.cpython-38.pyc ADDED
Binary file (38.7 kB). View file
 
ldm/models/diffusion/__pycache__/ddpm_audio.cpython-39.pyc ADDED
Binary file (38.6 kB). View file
 
ldm/models/diffusion/__pycache__/ddpm_audio_inpaint.cpython-38.pyc ADDED
Binary file (33.4 kB). View file
 
ldm/models/diffusion/__pycache__/plms.cpython-38.pyc ADDED
Binary file (7.37 kB). View file
 
ldm/models/diffusion/__pycache__/plms.cpython-39.pyc ADDED
Binary file (7.29 kB). View file
 
ldm/models/diffusion/classifier.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import pytorch_lightning as pl
4
+ from omegaconf import OmegaConf
5
+ from torch.nn import functional as F
6
+ from torch.optim import AdamW
7
+ from torch.optim.lr_scheduler import LambdaLR
8
+ from copy import deepcopy
9
+ from einops import rearrange
10
+ from glob import glob
11
+ from natsort import natsorted
12
+
13
+ from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
14
+ from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
15
+
16
+ __models__ = {
17
+ 'class_label': EncoderUNetModel,
18
+ 'segmentation': UNetModel
19
+ }
20
+
21
+
22
+ def disabled_train(self, mode=True):
23
+ """Overwrite model.train with this function to make sure train/eval mode
24
+ does not change anymore."""
25
+ return self
26
+
27
+
28
+ class NoisyLatentImageClassifier(pl.LightningModule):
29
+
30
+ def __init__(self,
31
+ diffusion_path,
32
+ num_classes,
33
+ ckpt_path=None,
34
+ pool='attention',
35
+ label_key=None,
36
+ diffusion_ckpt_path=None,
37
+ scheduler_config=None,
38
+ weight_decay=1.e-2,
39
+ log_steps=10,
40
+ monitor='val/loss',
41
+ *args,
42
+ **kwargs):
43
+ super().__init__(*args, **kwargs)
44
+ self.num_classes = num_classes
45
+ # get latest config of diffusion model
46
+ diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
47
+ self.diffusion_config = OmegaConf.load(diffusion_config).model
48
+ self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
49
+ self.load_diffusion()
50
+
51
+ self.monitor = monitor
52
+ self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
53
+ self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
54
+ self.log_steps = log_steps
55
+
56
+ self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
57
+ else self.diffusion_model.cond_stage_key
58
+
59
+ assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
60
+
61
+ if self.label_key not in __models__:
62
+ raise NotImplementedError()
63
+
64
+ self.load_classifier(ckpt_path, pool)
65
+
66
+ self.scheduler_config = scheduler_config
67
+ self.use_scheduler = self.scheduler_config is not None
68
+ self.weight_decay = weight_decay
69
+
70
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
71
+ sd = torch.load(path, map_location="cpu")
72
+ if "state_dict" in list(sd.keys()):
73
+ sd = sd["state_dict"]
74
+ keys = list(sd.keys())
75
+ for k in keys:
76
+ for ik in ignore_keys:
77
+ if k.startswith(ik):
78
+ print("Deleting key {} from state_dict.".format(k))
79
+ del sd[k]
80
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
81
+ sd, strict=False)
82
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
83
+ if len(missing) > 0:
84
+ print(f"Missing Keys: {missing}")
85
+ if len(unexpected) > 0:
86
+ print(f"Unexpected Keys: {unexpected}")
87
+
88
+ def load_diffusion(self):
89
+ model = instantiate_from_config(self.diffusion_config)
90
+ self.diffusion_model = model.eval()
91
+ self.diffusion_model.train = disabled_train
92
+ for param in self.diffusion_model.parameters():
93
+ param.requires_grad = False
94
+
95
+ def load_classifier(self, ckpt_path, pool):
96
+ model_config = deepcopy(self.diffusion_config.params.unet_config.params)
97
+ model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
98
+ model_config.out_channels = self.num_classes
99
+ if self.label_key == 'class_label':
100
+ model_config.pool = pool
101
+
102
+ self.model = __models__[self.label_key](**model_config)
103
+ if ckpt_path is not None:
104
+ print('#####################################################################')
105
+ print(f'load from ckpt "{ckpt_path}"')
106
+ print('#####################################################################')
107
+ self.init_from_ckpt(ckpt_path)
108
+
109
+ @torch.no_grad()
110
+ def get_x_noisy(self, x, t, noise=None):
111
+ noise = default(noise, lambda: torch.randn_like(x))
112
+ continuous_sqrt_alpha_cumprod = None
113
+ if self.diffusion_model.use_continuous_noise:
114
+ continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
115
+ # todo: make sure t+1 is correct here
116
+
117
+ return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
118
+ continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
119
+
120
+ def forward(self, x_noisy, t, *args, **kwargs):
121
+ return self.model(x_noisy, t)
122
+
123
+ @torch.no_grad()
124
+ def get_input(self, batch, k):
125
+ x = batch[k]
126
+ if len(x.shape) == 3:
127
+ x = x[..., None]
128
+ x = rearrange(x, 'b h w c -> b c h w')
129
+ x = x.to(memory_format=torch.contiguous_format).float()
130
+ return x
131
+
132
+ @torch.no_grad()
133
+ def get_conditioning(self, batch, k=None):
134
+ if k is None:
135
+ k = self.label_key
136
+ assert k is not None, 'Needs to provide label key'
137
+
138
+ targets = batch[k].to(self.device)
139
+
140
+ if self.label_key == 'segmentation':
141
+ targets = rearrange(targets, 'b h w c -> b c h w')
142
+ for down in range(self.numd):
143
+ h, w = targets.shape[-2:]
144
+ targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
145
+
146
+ # targets = rearrange(targets,'b c h w -> b h w c')
147
+
148
+ return targets
149
+
150
+ def compute_top_k(self, logits, labels, k, reduction="mean"):
151
+ _, top_ks = torch.topk(logits, k, dim=1)
152
+ if reduction == "mean":
153
+ return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
154
+ elif reduction == "none":
155
+ return (top_ks == labels[:, None]).float().sum(dim=-1)
156
+
157
+ def on_train_epoch_start(self):
158
+ # save some memory
159
+ self.diffusion_model.model.to('cpu')
160
+
161
+ @torch.no_grad()
162
+ def write_logs(self, loss, logits, targets):
163
+ log_prefix = 'train' if self.training else 'val'
164
+ log = {}
165
+ log[f"{log_prefix}/loss"] = loss.mean()
166
+ log[f"{log_prefix}/acc@1"] = self.compute_top_k(
167
+ logits, targets, k=1, reduction="mean"
168
+ )
169
+ log[f"{log_prefix}/acc@5"] = self.compute_top_k(
170
+ logits, targets, k=5, reduction="mean"
171
+ )
172
+
173
+ self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
174
+ self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
175
+ self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
176
+ lr = self.optimizers().param_groups[0]['lr']
177
+ self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
178
+
179
+ def shared_step(self, batch, t=None):
180
+ x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
181
+ targets = self.get_conditioning(batch)
182
+ if targets.dim() == 4:
183
+ targets = targets.argmax(dim=1)
184
+ if t is None:
185
+ t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
186
+ else:
187
+ t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
188
+ x_noisy = self.get_x_noisy(x, t)
189
+ logits = self(x_noisy, t)
190
+
191
+ loss = F.cross_entropy(logits, targets, reduction='none')
192
+
193
+ self.write_logs(loss.detach(), logits.detach(), targets.detach())
194
+
195
+ loss = loss.mean()
196
+ return loss, logits, x_noisy, targets
197
+
198
+ def training_step(self, batch, batch_idx):
199
+ loss, *_ = self.shared_step(batch)
200
+ return loss
201
+
202
+ def reset_noise_accs(self):
203
+ self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
204
+ range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
205
+
206
+ def on_validation_start(self):
207
+ self.reset_noise_accs()
208
+
209
+ @torch.no_grad()
210
+ def validation_step(self, batch, batch_idx):
211
+ loss, *_ = self.shared_step(batch)
212
+
213
+ for t in self.noisy_acc:
214
+ _, logits, _, targets = self.shared_step(batch, t)
215
+ self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
216
+ self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
217
+
218
+ return loss
219
+
220
+ def configure_optimizers(self):
221
+ optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
222
+
223
+ if self.use_scheduler:
224
+ scheduler = instantiate_from_config(self.scheduler_config)
225
+
226
+ print("Setting up LambdaLR scheduler...")
227
+ scheduler = [
228
+ {
229
+ 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
230
+ 'interval': 'step',
231
+ 'frequency': 1
232
+ }]
233
+ return [optimizer], scheduler
234
+
235
+ return optimizer
236
+
237
+ @torch.no_grad()
238
+ def log_images(self, batch, N=8, *args, **kwargs):
239
+ log = dict()
240
+ x = self.get_input(batch, self.diffusion_model.first_stage_key)
241
+ log['inputs'] = x
242
+
243
+ y = self.get_conditioning(batch)
244
+
245
+ if self.label_key == 'class_label':
246
+ y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
247
+ log['labels'] = y
248
+
249
+ if ismap(y):
250
+ log['labels'] = self.diffusion_model.to_rgb(y)
251
+
252
+ for step in range(self.log_steps):
253
+ current_time = step * self.log_time_interval
254
+
255
+ _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
256
+
257
+ log[f'inputs@t{current_time}'] = x_noisy
258
+
259
+ pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
260
+ pred = rearrange(pred, 'b h w c -> b c h w')
261
+
262
+ log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
263
+
264
+ for key in log:
265
+ log[key] = log[key][:N]
266
+
267
+ return log
ldm/models/diffusion/ddim.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+
8
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
9
+ extract_into_tensor
10
+
11
+
12
+ class DDIMSampler(object):
13
+ def __init__(self, model, schedule="linear", **kwargs):
14
+ super().__init__()
15
+ self.model = model
16
+ self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
17
+ self.ddpm_num_timesteps = model.num_timesteps
18
+ self.schedule = schedule
19
+
20
+ def register_buffer(self, name, attr):
21
+ if type(attr) == torch.Tensor:
22
+ # if attr.device != torch.device("cuda"):
23
+ # attr = attr.to(torch.device("cuda"))
24
+ attr = attr.to(self.device)
25
+ setattr(self, name, attr)
26
+
27
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
28
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
29
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
30
+ alphas_cumprod = self.model.alphas_cumprod
31
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
32
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
33
+
34
+ self.register_buffer('betas', to_torch(self.model.betas))
35
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
36
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
37
+
38
+ # calculations for diffusion q(x_t | x_{t-1}) and others
39
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
40
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
41
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
42
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
43
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
44
+
45
+ # ddim sampling parameters
46
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
47
+ ddim_timesteps=self.ddim_timesteps,
48
+ eta=ddim_eta,verbose=verbose)
49
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
50
+ self.register_buffer('ddim_alphas', ddim_alphas)
51
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
52
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
53
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
54
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
55
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
56
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
57
+
58
+ @torch.no_grad()
59
+ def sample(self,
60
+ S,
61
+ batch_size,
62
+ shape,
63
+ conditioning=None,
64
+ callback=None,
65
+ normals_sequence=None,
66
+ img_callback=None,
67
+ quantize_x0=False,
68
+ eta=0.,
69
+ mask=None,
70
+ x0=None,
71
+ temperature=1.,
72
+ noise_dropout=0.,
73
+ score_corrector=None,
74
+ corrector_kwargs=None,
75
+ verbose=True,
76
+ x_T=None,
77
+ log_every_t=100,
78
+ unconditional_guidance_scale=1.,
79
+ unconditional_conditioning=None,
80
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
81
+ **kwargs
82
+ ):
83
+ if conditioning is not None:
84
+ if isinstance(conditioning, dict):
85
+ ctmp = conditioning[list(conditioning.keys())[0]]
86
+ while isinstance(ctmp, list): ctmp = ctmp[0]
87
+ cbs = ctmp.shape[0]
88
+ if cbs != batch_size:
89
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
90
+ else:
91
+ if conditioning.shape[0] != batch_size:
92
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
93
+
94
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
95
+ # sampling
96
+ C, H, W = shape
97
+ size = (batch_size, C, H, W)
98
+ # print(f'Data shape for DDIM sampling is {size}, eta {eta}')
99
+
100
+ samples, intermediates = self.ddim_sampling(conditioning, size,
101
+ callback=callback,
102
+ img_callback=img_callback,
103
+ quantize_denoised=quantize_x0,
104
+ mask=mask, x0=x0,
105
+ ddim_use_original_steps=False,
106
+ noise_dropout=noise_dropout,
107
+ temperature=temperature,
108
+ score_corrector=score_corrector,
109
+ corrector_kwargs=corrector_kwargs,
110
+ x_T=x_T,
111
+ log_every_t=log_every_t,
112
+ unconditional_guidance_scale=unconditional_guidance_scale,
113
+ unconditional_conditioning=unconditional_conditioning,
114
+ )
115
+ return samples, intermediates
116
+
117
+ @torch.no_grad()
118
+ def ddim_sampling(self, cond, shape,
119
+ x_T=None, ddim_use_original_steps=False,
120
+ callback=None, timesteps=None, quantize_denoised=False,
121
+ mask=None, x0=None, img_callback=None, log_every_t=100,
122
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
123
+ unconditional_guidance_scale=1., unconditional_conditioning=None,):
124
+ device = self.model.betas.device
125
+ b = shape[0]
126
+ if x_T is None:
127
+ img = torch.randn(shape, device=device)
128
+ else:
129
+ img = x_T
130
+
131
+ if timesteps is None:
132
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
133
+ elif timesteps is not None and not ddim_use_original_steps:
134
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
135
+ timesteps = self.ddim_timesteps[:subset_end]
136
+
137
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
138
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
139
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
140
+
141
+ # iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
142
+
143
+ for i, step in enumerate(time_range):
144
+ index = total_steps - i - 1
145
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
146
+
147
+ if mask is not None:
148
+ assert x0 is not None
149
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
150
+ img = img_orig * mask + (1. - mask) * img
151
+
152
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
153
+ quantize_denoised=quantize_denoised, temperature=temperature,
154
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
155
+ corrector_kwargs=corrector_kwargs,
156
+ unconditional_guidance_scale=unconditional_guidance_scale,
157
+ unconditional_conditioning=unconditional_conditioning)
158
+ img, pred_x0 = outs
159
+ if callback: callback(i)
160
+ if img_callback: img_callback(pred_x0, i)
161
+
162
+ if index % log_every_t == 0 or index == total_steps - 1:
163
+ intermediates['x_inter'].append(img)
164
+ intermediates['pred_x0'].append(pred_x0)
165
+
166
+ return img, intermediates
167
+
168
+ @torch.no_grad()
169
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
170
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
171
+ unconditional_guidance_scale=1., unconditional_conditioning=None):
172
+ b, *_, device = *x.shape, x.device
173
+
174
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
175
+ e_t = self.model.apply_model(x, t, c)
176
+ else:
177
+ x_in = torch.cat([x] * 2)
178
+ t_in = torch.cat([t] * 2)
179
+ if isinstance(c, dict):
180
+ assert isinstance(unconditional_conditioning, dict)
181
+ c_in = dict()
182
+ for k in c:
183
+ if isinstance(c[k], list):
184
+ c_in[k] = [torch.cat([
185
+ unconditional_conditioning[k][i],
186
+ c[k][i]]) for i in range(len(c[k]))]
187
+ else:
188
+ c_in[k] = torch.cat([
189
+ unconditional_conditioning[k],
190
+ c[k]])
191
+ elif isinstance(c, list):
192
+ c_in = list()
193
+ assert isinstance(unconditional_conditioning, list)
194
+ for i in range(len(c)):
195
+ c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
196
+ else:
197
+ c_in = torch.cat([unconditional_conditioning, c])# c/uc shape [b,seq_len=77,dim=1024],c_in shape [b*2,seq_len,dim]
198
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
199
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
200
+
201
+ if score_corrector is not None:
202
+ assert self.model.parameterization == "eps"
203
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
204
+
205
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
206
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
207
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
208
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
209
+ # select parameters corresponding to the currently considered timestep
210
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
211
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
212
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
213
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
214
+
215
+ # current prediction for x_0
216
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
217
+ if quantize_denoised:
218
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
219
+ # direction pointing to x_t
220
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
221
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
222
+ if noise_dropout > 0.:
223
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
224
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
225
+ return x_prev, pred_x0
226
+
227
+ @torch.no_grad()
228
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
229
+ # fast, but does not allow for exact reconstruction
230
+ # t serves as an index to gather the correct alphas
231
+ if use_original_steps:
232
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
233
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
234
+ else:
235
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
236
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
237
+
238
+ if noise is None:
239
+ noise = torch.randn_like(x0)
240
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
241
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
242
+
243
+ @torch.no_grad()
244
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
245
+ use_original_steps=False):
246
+
247
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
248
+ timesteps = timesteps[:t_start]
249
+
250
+ time_range = np.flip(timesteps)
251
+ total_steps = timesteps.shape[0]
252
+ # print(f"Running DDIM Sampling with {total_steps} timesteps")
253
+
254
+ # iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
255
+ x_dec = x_latent
256
+ for i, step in enumerate(time_range):
257
+ index = total_steps - i - 1
258
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
259
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
260
+ unconditional_guidance_scale=unconditional_guidance_scale,
261
+ unconditional_conditioning=unconditional_conditioning)
262
+ return x_dec
ldm/models/diffusion/ddpm.py ADDED
@@ -0,0 +1,1444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+ import torch
9
+ import torch.nn as nn
10
+ import numpy as np
11
+ import pytorch_lightning as pl
12
+ from torch.optim.lr_scheduler import LambdaLR
13
+ from einops import rearrange, repeat
14
+ from contextlib import contextmanager
15
+ from functools import partial
16
+ from tqdm import tqdm
17
+ from torchvision.utils import make_grid
18
+ from pytorch_lightning.utilities.distributed import rank_zero_only
19
+
20
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
21
+ from ldm.modules.ema import LitEma
22
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
23
+ from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
24
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
25
+ from ldm.models.diffusion.ddim import DDIMSampler
26
+
27
+
28
+ __conditioning_keys__ = {'concat': 'c_concat',
29
+ 'crossattn': 'c_crossattn',
30
+ 'adm': 'y'}
31
+
32
+
33
+ def disabled_train(self, mode=True):
34
+ """Overwrite model.train with this function to make sure train/eval mode
35
+ does not change anymore."""
36
+ return self
37
+
38
+
39
+ def uniform_on_device(r1, r2, shape, device):
40
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
41
+
42
+
43
+ class DDPM(pl.LightningModule):
44
+ # classic DDPM with Gaussian diffusion, in image space
45
+ def __init__(self,
46
+ unet_config,
47
+ timesteps=1000,
48
+ beta_schedule="linear",
49
+ loss_type="l2",
50
+ ckpt_path=None,
51
+ ignore_keys=[],
52
+ load_only_unet=False,
53
+ monitor="val/loss",
54
+ use_ema=True,
55
+ first_stage_key="image",
56
+ image_size=256,
57
+ channels=3,
58
+ log_every_t=100,
59
+ clip_denoised=True,
60
+ linear_start=1e-4,
61
+ linear_end=2e-2,
62
+ cosine_s=8e-3,
63
+ given_betas=None,
64
+ original_elbo_weight=0.,
65
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
66
+ l_simple_weight=1.,
67
+ conditioning_key=None,
68
+ parameterization="eps", # all config files uses "eps"
69
+ scheduler_config=None,
70
+ use_positional_encodings=False,
71
+ learn_logvar=False,
72
+ logvar_init=0.,
73
+ ):
74
+ super().__init__()
75
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
76
+ self.parameterization = parameterization
77
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
78
+ self.cond_stage_model = None
79
+ self.clip_denoised = clip_denoised
80
+ self.log_every_t = log_every_t
81
+ self.first_stage_key = first_stage_key
82
+ self.image_size = image_size # try conv?
83
+ self.channels = channels
84
+ self.use_positional_encodings = use_positional_encodings
85
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
86
+ count_params(self.model, verbose=True)
87
+ self.use_ema = use_ema
88
+ if self.use_ema:
89
+ self.model_ema = LitEma(self.model)
90
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
91
+
92
+ self.use_scheduler = scheduler_config is not None
93
+ if self.use_scheduler:
94
+ self.scheduler_config = scheduler_config
95
+
96
+ self.v_posterior = v_posterior
97
+ self.original_elbo_weight = original_elbo_weight
98
+ self.l_simple_weight = l_simple_weight
99
+
100
+ if monitor is not None:
101
+ self.monitor = monitor
102
+ if ckpt_path is not None:
103
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
104
+
105
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
106
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
107
+
108
+ self.loss_type = loss_type
109
+
110
+ self.learn_logvar = learn_logvar
111
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
112
+ if self.learn_logvar:
113
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
114
+
115
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
116
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
117
+ if exists(given_betas):
118
+ betas = given_betas
119
+ else:
120
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
121
+ cosine_s=cosine_s)
122
+ alphas = 1. - betas
123
+ alphas_cumprod = np.cumprod(alphas, axis=0)
124
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
125
+
126
+ timesteps, = betas.shape
127
+ self.num_timesteps = int(timesteps)
128
+ self.linear_start = linear_start
129
+ self.linear_end = linear_end
130
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
131
+
132
+ to_torch = partial(torch.tensor, dtype=torch.float32)
133
+
134
+ self.register_buffer('betas', to_torch(betas))
135
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
136
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
137
+
138
+ # calculations for diffusion q(x_t | x_{t-1}) and others
139
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
140
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
141
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
142
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
143
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
144
+
145
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
146
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
147
+ 1. - alphas_cumprod) + self.v_posterior * betas
148
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
149
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
150
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
151
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
152
+ self.register_buffer('posterior_mean_coef1', to_torch(
153
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
154
+ self.register_buffer('posterior_mean_coef2', to_torch(
155
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
156
+
157
+ if self.parameterization == "eps":
158
+ lvlb_weights = self.betas ** 2 / (
159
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
160
+ elif self.parameterization == "x0":
161
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
162
+ else:
163
+ raise NotImplementedError("mu not supported")
164
+ # TODO how to choose this term
165
+ lvlb_weights[0] = lvlb_weights[1]
166
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
167
+ assert not torch.isnan(self.lvlb_weights).all()
168
+
169
+ @contextmanager
170
+ def ema_scope(self, context=None):
171
+ if self.use_ema:
172
+ self.model_ema.store(self.model.parameters())
173
+ self.model_ema.copy_to(self.model)
174
+ if context is not None:
175
+ print(f"{context}: Switched to EMA weights")
176
+ try:
177
+ yield None
178
+ finally:
179
+ if self.use_ema:
180
+ self.model_ema.restore(self.model.parameters())
181
+ if context is not None:
182
+ print(f"{context}: Restored training weights")
183
+
184
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
185
+ sd = torch.load(path, map_location="cpu")
186
+ if "state_dict" in list(sd.keys()):
187
+ sd = sd["state_dict"]
188
+ keys = list(sd.keys())
189
+ for k in keys:
190
+ for ik in ignore_keys:
191
+ if k.startswith(ik):
192
+ print("Deleting key {} from state_dict.".format(k))
193
+ del sd[k]
194
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
195
+ sd, strict=False)
196
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
197
+ if len(missing) > 0:
198
+ print(f"Missing Keys: {missing}")
199
+ if len(unexpected) > 0:
200
+ print(f"Unexpected Keys: {unexpected}")
201
+
202
+ def q_mean_variance(self, x_start, t):
203
+ """
204
+ Get the distribution q(x_t | x_0).
205
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
206
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
207
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
208
+ """
209
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
210
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
211
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
212
+ return mean, variance, log_variance
213
+
214
+ def predict_start_from_noise(self, x_t, t, noise):
215
+ return (
216
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
217
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
218
+ )
219
+
220
+ def q_posterior(self, x_start, x_t, t):
221
+ posterior_mean = (
222
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
223
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
224
+ )
225
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
226
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
227
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
228
+
229
+ def p_mean_variance(self, x, t, clip_denoised: bool):
230
+ model_out = self.model(x, t)
231
+ if self.parameterization == "eps":
232
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
233
+ elif self.parameterization == "x0":
234
+ x_recon = model_out
235
+ if clip_denoised:
236
+ x_recon.clamp_(-1., 1.)
237
+
238
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
239
+ return model_mean, posterior_variance, posterior_log_variance
240
+
241
+ @torch.no_grad()
242
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
243
+ b, *_, device = *x.shape, x.device
244
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
245
+ noise = noise_like(x.shape, device, repeat_noise)
246
+ # no noise when t == 0
247
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
248
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
249
+
250
+ @torch.no_grad()
251
+ def p_sample_loop(self, shape, return_intermediates=False):
252
+ device = self.betas.device
253
+ b = shape[0]
254
+ img = torch.randn(shape, device=device)
255
+ intermediates = [img]
256
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
257
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
258
+ clip_denoised=self.clip_denoised)
259
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
260
+ intermediates.append(img)
261
+ if return_intermediates:
262
+ return img, intermediates
263
+ return img
264
+
265
+ @torch.no_grad()
266
+ def sample(self, batch_size=16, return_intermediates=False):
267
+ image_size = self.image_size
268
+ channels = self.channels
269
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
270
+ return_intermediates=return_intermediates)
271
+
272
+ def q_sample(self, x_start, t, noise=None):
273
+ noise = default(noise, lambda: torch.randn_like(x_start))
274
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
275
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
276
+
277
+ def get_loss(self, pred, target, mean=True):
278
+ if self.loss_type == 'l1':
279
+ loss = (target - pred).abs()
280
+ if mean:
281
+ loss = loss.mean()
282
+ elif self.loss_type == 'l2':
283
+ if mean:
284
+ loss = torch.nn.functional.mse_loss(target, pred)
285
+ else:
286
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
287
+ else:
288
+ raise NotImplementedError("unknown loss type '{loss_type}'")
289
+
290
+ return loss
291
+
292
+ def p_losses(self, x_start, t, noise=None):
293
+ noise = default(noise, lambda: torch.randn_like(x_start))
294
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
295
+ model_out = self.model(x_noisy, t)
296
+
297
+ loss_dict = {}
298
+ if self.parameterization == "eps":
299
+ target = noise
300
+ elif self.parameterization == "x0":
301
+ target = x_start
302
+ else:
303
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
304
+
305
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
306
+
307
+ log_prefix = 'train' if self.training else 'val'
308
+
309
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
310
+ loss_simple = loss.mean() * self.l_simple_weight
311
+
312
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
313
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
314
+
315
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
316
+
317
+ loss_dict.update({f'{log_prefix}/loss': loss})
318
+
319
+ return loss, loss_dict
320
+
321
+ def forward(self, x, *args, **kwargs):
322
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
323
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
324
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
325
+ return self.p_losses(x, t, *args, **kwargs)
326
+
327
+ def get_input(self, batch, k):
328
+ x = batch[k]
329
+ if len(x.shape) == 3:
330
+ x = x[..., None]
331
+ x = rearrange(x, 'b h w c -> b c h w')
332
+ x = x.to(memory_format=torch.contiguous_format).float()
333
+ return x
334
+
335
+ def shared_step(self, batch):
336
+ x = self.get_input(batch, self.first_stage_key)
337
+ loss, loss_dict = self(x)
338
+ return loss, loss_dict
339
+
340
+ def training_step(self, batch, batch_idx):
341
+ loss, loss_dict = self.shared_step(batch)
342
+
343
+ self.log_dict(loss_dict, prog_bar=True,
344
+ logger=True, on_step=True, on_epoch=True)
345
+
346
+ self.log("global_step", self.global_step,
347
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
348
+
349
+ if self.use_scheduler:
350
+ lr = self.optimizers().param_groups[0]['lr']
351
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
352
+
353
+ return loss
354
+
355
+ @torch.no_grad()
356
+ def validation_step(self, batch, batch_idx):
357
+ _, loss_dict_no_ema = self.shared_step(batch)
358
+ with self.ema_scope():
359
+ _, loss_dict_ema = self.shared_step(batch)
360
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
361
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
362
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
363
+
364
+ def on_train_batch_end(self, *args, **kwargs):
365
+ if self.use_ema:
366
+ self.model_ema(self.model)
367
+
368
+ def _get_rows_from_list(self, samples):
369
+ n_imgs_per_row = len(samples)
370
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
371
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
372
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
373
+ return denoise_grid
374
+
375
+ @torch.no_grad()
376
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
377
+ log = dict()
378
+ x = self.get_input(batch, self.first_stage_key)
379
+ N = min(x.shape[0], N)
380
+ n_row = min(x.shape[0], n_row)
381
+ x = x.to(self.device)[:N]
382
+ log["inputs"] = x
383
+
384
+ # get diffusion row
385
+ diffusion_row = list()
386
+ x_start = x[:n_row]
387
+
388
+ for t in range(self.num_timesteps):
389
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
390
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
391
+ t = t.to(self.device).long()
392
+ noise = torch.randn_like(x_start)
393
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
394
+ diffusion_row.append(x_noisy)
395
+
396
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
397
+
398
+ if sample:
399
+ # get denoise row
400
+ with self.ema_scope("Plotting"):
401
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
402
+
403
+ log["samples"] = samples
404
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
405
+
406
+ if return_keys:
407
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
408
+ return log
409
+ else:
410
+ return {key: log[key] for key in return_keys}
411
+ return log
412
+
413
+ def configure_optimizers(self):
414
+ lr = self.learning_rate
415
+ params = list(self.model.parameters())
416
+ if self.learn_logvar:
417
+ params = params + [self.logvar]
418
+ opt = torch.optim.AdamW(params, lr=lr)
419
+ return opt
420
+
421
+
422
+ class LatentDiffusion(DDPM):
423
+ """main class"""
424
+ def __init__(self,
425
+ first_stage_config,
426
+ cond_stage_config,
427
+ num_timesteps_cond=None,
428
+ cond_stage_key="image",# 'caption' for txt2image, 'masked_image' for inpainting
429
+ cond_stage_trainable=False,
430
+ concat_mode=True,# true for inpainting
431
+ cond_stage_forward=None,
432
+ conditioning_key=None, # 'crossattn' for txt2image, None for inpainting
433
+ scale_factor=1.0,
434
+ scale_by_std=False,
435
+ *args, **kwargs):
436
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
437
+ self.scale_by_std = scale_by_std
438
+ assert self.num_timesteps_cond <= kwargs['timesteps']
439
+ # for backwards compatibility after implementation of DiffusionWrapper
440
+ if conditioning_key is None:
441
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
442
+ if cond_stage_config == '__is_unconditional__':
443
+ conditioning_key = None
444
+ ckpt_path = kwargs.pop("ckpt_path", None)
445
+ ignore_keys = kwargs.pop("ignore_keys", [])
446
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
447
+ self.concat_mode = concat_mode
448
+ self.cond_stage_trainable = cond_stage_trainable
449
+ self.cond_stage_key = cond_stage_key
450
+ try:
451
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
452
+ except:
453
+ self.num_downs = 0
454
+ if not scale_by_std:
455
+ self.scale_factor = scale_factor
456
+ else:
457
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
458
+ self.instantiate_first_stage(first_stage_config)
459
+ self.instantiate_cond_stage(cond_stage_config)
460
+ self.cond_stage_forward = cond_stage_forward
461
+ self.clip_denoised = False
462
+ self.bbox_tokenizer = None
463
+
464
+ self.restarted_from_ckpt = False
465
+ if ckpt_path is not None:
466
+ self.init_from_ckpt(ckpt_path, ignore_keys)
467
+ self.restarted_from_ckpt = True
468
+
469
+ def make_cond_schedule(self, ):
470
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
471
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
472
+ self.cond_ids[:self.num_timesteps_cond] = ids
473
+
474
+ @rank_zero_only
475
+ @torch.no_grad()
476
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
477
+ # only for very first batch
478
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
479
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
480
+ # set rescale weight to 1./std of encodings
481
+ print("### USING STD-RESCALING ###")
482
+ x = super().get_input(batch, self.first_stage_key)
483
+ x = x.to(self.device)
484
+ encoder_posterior = self.encode_first_stage(x)
485
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
486
+ del self.scale_factor
487
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
488
+ print(f"setting self.scale_factor to {self.scale_factor}")
489
+ print("### USING STD-RESCALING ###")
490
+
491
+ def register_schedule(self,
492
+ given_betas=None, beta_schedule="linear", timesteps=1000,
493
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
494
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
495
+
496
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
497
+ if self.shorten_cond_schedule:
498
+ self.make_cond_schedule()
499
+
500
+ def instantiate_first_stage(self, config):
501
+ model = instantiate_from_config(config)
502
+ self.first_stage_model = model.eval()
503
+ self.first_stage_model.train = disabled_train
504
+ for param in self.first_stage_model.parameters():
505
+ param.requires_grad = False
506
+
507
+ def instantiate_cond_stage(self, config):
508
+ if not self.cond_stage_trainable:
509
+ if config == "__is_first_stage__":# inpaint
510
+ print("Using first stage also as cond stage.")
511
+ self.cond_stage_model = self.first_stage_model
512
+ elif config == "__is_unconditional__":
513
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
514
+ self.cond_stage_model = None
515
+ # self.be_unconditional = True
516
+ else:
517
+ model = instantiate_from_config(config)
518
+ self.cond_stage_model = model.eval()
519
+ self.cond_stage_model.train = disabled_train
520
+ for param in self.cond_stage_model.parameters():
521
+ param.requires_grad = False
522
+ else:
523
+ assert config != '__is_first_stage__'
524
+ assert config != '__is_unconditional__'
525
+ model = instantiate_from_config(config)
526
+ self.cond_stage_model = model
527
+
528
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
529
+ denoise_row = []
530
+ for zd in tqdm(samples, desc=desc):
531
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
532
+ force_not_quantize=force_no_decoder_quantization))
533
+ n_imgs_per_row = len(denoise_row)
534
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
535
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
536
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
537
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
538
+ return denoise_grid
539
+
540
+ def get_first_stage_encoding(self, encoder_posterior):
541
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
542
+ z = encoder_posterior.sample()
543
+ elif isinstance(encoder_posterior, torch.Tensor):
544
+ z = encoder_posterior
545
+ else:
546
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
547
+ return self.scale_factor * z
548
+
549
+ def get_learned_conditioning(self, c):
550
+ if self.cond_stage_forward is None:
551
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
552
+ c = self.cond_stage_model.encode(c)
553
+ if isinstance(c, DiagonalGaussianDistribution):
554
+ c = c.mode()
555
+ else:
556
+ c = self.cond_stage_model(c)
557
+ else:
558
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
559
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
560
+ return c
561
+
562
+ def meshgrid(self, h, w):
563
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
564
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
565
+
566
+ arr = torch.cat([y, x], dim=-1)
567
+ return arr
568
+
569
+ def delta_border(self, h, w):
570
+ """
571
+ :param h: height
572
+ :param w: width
573
+ :return: normalized distance to image border,
574
+ wtith min distance = 0 at border and max dist = 0.5 at image center
575
+ """
576
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
577
+ arr = self.meshgrid(h, w) / lower_right_corner
578
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
579
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
580
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
581
+ return edge_dist
582
+
583
+ def get_weighting(self, h, w, Ly, Lx, device):
584
+ weighting = self.delta_border(h, w)
585
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
586
+ self.split_input_params["clip_max_weight"], )
587
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
588
+
589
+ if self.split_input_params["tie_braker"]:
590
+ L_weighting = self.delta_border(Ly, Lx)
591
+ L_weighting = torch.clip(L_weighting,
592
+ self.split_input_params["clip_min_tie_weight"],
593
+ self.split_input_params["clip_max_tie_weight"])
594
+
595
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
596
+ weighting = weighting * L_weighting
597
+ return weighting
598
+
599
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
600
+ """
601
+ :param x: img of size (bs, c, h, w)
602
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
603
+ """
604
+ bs, nc, h, w = x.shape
605
+
606
+ # number of crops in image
607
+ Ly = (h - kernel_size[0]) // stride[0] + 1
608
+ Lx = (w - kernel_size[1]) // stride[1] + 1
609
+
610
+ if uf == 1 and df == 1:
611
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
612
+ unfold = torch.nn.Unfold(**fold_params)
613
+
614
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
615
+
616
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
617
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
618
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
619
+
620
+ elif uf > 1 and df == 1:
621
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
622
+ unfold = torch.nn.Unfold(**fold_params)
623
+
624
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
625
+ dilation=1, padding=0,
626
+ stride=(stride[0] * uf, stride[1] * uf))
627
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
628
+
629
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
630
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
631
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
632
+
633
+ elif df > 1 and uf == 1:
634
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
635
+ unfold = torch.nn.Unfold(**fold_params)
636
+
637
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
638
+ dilation=1, padding=0,
639
+ stride=(stride[0] // df, stride[1] // df))
640
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
641
+
642
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
643
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
644
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
645
+
646
+ else:
647
+ raise NotImplementedError
648
+
649
+ return fold, unfold, normalization, weighting
650
+
651
+ @torch.no_grad()
652
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
653
+ cond_key=None, return_original_cond=False, bs=None):
654
+ x = super().get_input(batch, k)
655
+ if bs is not None:
656
+ x = x[:bs]
657
+ x = x.to(self.device)
658
+ encoder_posterior = self.encode_first_stage(x)
659
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
660
+
661
+ if self.model.conditioning_key is not None:
662
+ if cond_key is None:
663
+ cond_key = self.cond_stage_key
664
+ if cond_key != self.first_stage_key:# cond_key is not image. for inapint it's masked_img
665
+ if cond_key in ['caption', 'coordinates_bbox']:
666
+ xc = batch[cond_key]
667
+ elif cond_key == 'class_label':
668
+ xc = batch
669
+ else:
670
+ xc = super().get_input(batch, cond_key).to(self.device)
671
+ else:
672
+ xc = x
673
+ if not self.cond_stage_trainable or force_c_encode:
674
+ if isinstance(xc, dict) or isinstance(xc, list):
675
+ # import pudb; pudb.set_trace()
676
+ c = self.get_learned_conditioning(xc)
677
+ else:
678
+ c = self.get_learned_conditioning(xc.to(self.device))
679
+ else:
680
+ c = xc
681
+ if bs is not None:
682
+ c = c[:bs]
683
+
684
+ if self.use_positional_encodings:
685
+ pos_x, pos_y = self.compute_latent_shifts(batch)
686
+ ckey = __conditioning_keys__[self.model.conditioning_key]
687
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
688
+
689
+ else:
690
+ c = None
691
+ xc = None
692
+ if self.use_positional_encodings:
693
+ pos_x, pos_y = self.compute_latent_shifts(batch)
694
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
695
+ out = [z, c]
696
+ if return_first_stage_outputs:
697
+ xrec = self.decode_first_stage(z)
698
+ out.extend([x, xrec])
699
+ if return_original_cond:
700
+ out.append(xc)
701
+ return out
702
+
703
+ @torch.no_grad()
704
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
705
+ if predict_cids:
706
+ if z.dim() == 4:
707
+ z = torch.argmax(z.exp(), dim=1).long()
708
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
709
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
710
+
711
+ z = 1. / self.scale_factor * z
712
+
713
+ if hasattr(self, "split_input_params"):
714
+ if self.split_input_params["patch_distributed_vq"]:
715
+ ks = self.split_input_params["ks"] # eg. (128, 128)
716
+ stride = self.split_input_params["stride"] # eg. (64, 64)
717
+ uf = self.split_input_params["vqf"]
718
+ bs, nc, h, w = z.shape
719
+ if ks[0] > h or ks[1] > w:
720
+ ks = (min(ks[0], h), min(ks[1], w))
721
+ print("reducing Kernel")
722
+
723
+ if stride[0] > h or stride[1] > w:
724
+ stride = (min(stride[0], h), min(stride[1], w))
725
+ print("reducing stride")
726
+
727
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
728
+
729
+ z = unfold(z) # (bn, nc * prod(**ks), L)
730
+ # 1. Reshape to img shape
731
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
732
+
733
+ # 2. apply model loop over last dim
734
+ if isinstance(self.first_stage_model, VQModelInterface):
735
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
736
+ force_not_quantize=predict_cids or force_not_quantize)
737
+ for i in range(z.shape[-1])]
738
+ else:
739
+
740
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
741
+ for i in range(z.shape[-1])]
742
+
743
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
744
+ o = o * weighting
745
+ # Reverse 1. reshape to img shape
746
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
747
+ # stitch crops together
748
+ decoded = fold(o)
749
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
750
+ return decoded
751
+ else:
752
+ if isinstance(self.first_stage_model, VQModelInterface):
753
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
754
+ else:
755
+ return self.first_stage_model.decode(z)
756
+
757
+ else:
758
+ if isinstance(self.first_stage_model, VQModelInterface):
759
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
760
+ else:
761
+ return self.first_stage_model.decode(z)
762
+
763
+ # same as above but without decorator
764
+ def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
765
+ if predict_cids:
766
+ if z.dim() == 4:
767
+ z = torch.argmax(z.exp(), dim=1).long()
768
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
769
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
770
+
771
+ z = 1. / self.scale_factor * z
772
+
773
+ if hasattr(self, "split_input_params"):
774
+ if self.split_input_params["patch_distributed_vq"]:
775
+ ks = self.split_input_params["ks"] # eg. (128, 128)
776
+ stride = self.split_input_params["stride"] # eg. (64, 64)
777
+ uf = self.split_input_params["vqf"]
778
+ bs, nc, h, w = z.shape
779
+ if ks[0] > h or ks[1] > w:
780
+ ks = (min(ks[0], h), min(ks[1], w))
781
+ print("reducing Kernel")
782
+
783
+ if stride[0] > h or stride[1] > w:
784
+ stride = (min(stride[0], h), min(stride[1], w))
785
+ print("reducing stride")
786
+
787
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
788
+
789
+ z = unfold(z) # (bn, nc * prod(**ks), L)
790
+ # 1. Reshape to img shape
791
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
792
+
793
+ # 2. apply model loop over last dim
794
+ if isinstance(self.first_stage_model, VQModelInterface):
795
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
796
+ force_not_quantize=predict_cids or force_not_quantize)
797
+ for i in range(z.shape[-1])]
798
+ else:
799
+
800
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
801
+ for i in range(z.shape[-1])]
802
+
803
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
804
+ o = o * weighting
805
+ # Reverse 1. reshape to img shape
806
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
807
+ # stitch crops together
808
+ decoded = fold(o)
809
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
810
+ return decoded
811
+ else:
812
+ if isinstance(self.first_stage_model, VQModelInterface):
813
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
814
+ else:
815
+ return self.first_stage_model.decode(z)
816
+
817
+ else:
818
+ if isinstance(self.first_stage_model, VQModelInterface):
819
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
820
+ else:
821
+ return self.first_stage_model.decode(z)
822
+
823
+ @torch.no_grad()
824
+ def encode_first_stage(self, x):
825
+ if hasattr(self, "split_input_params"):
826
+ if self.split_input_params["patch_distributed_vq"]:
827
+ ks = self.split_input_params["ks"] # eg. (128, 128)
828
+ stride = self.split_input_params["stride"] # eg. (64, 64)
829
+ df = self.split_input_params["vqf"]
830
+ self.split_input_params['original_image_size'] = x.shape[-2:]
831
+ bs, nc, h, w = x.shape
832
+ if ks[0] > h or ks[1] > w:
833
+ ks = (min(ks[0], h), min(ks[1], w))
834
+ print("reducing Kernel")
835
+
836
+ if stride[0] > h or stride[1] > w:
837
+ stride = (min(stride[0], h), min(stride[1], w))
838
+ print("reducing stride")
839
+
840
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
841
+ z = unfold(x) # (bn, nc * prod(**ks), L)
842
+ # Reshape to img shape
843
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
844
+
845
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
846
+ for i in range(z.shape[-1])]
847
+
848
+ o = torch.stack(output_list, axis=-1)
849
+ o = o * weighting
850
+
851
+ # Reverse reshape to img shape
852
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
853
+ # stitch crops together
854
+ decoded = fold(o)
855
+ decoded = decoded / normalization
856
+ return decoded
857
+
858
+ else:
859
+ return self.first_stage_model.encode(x)
860
+ else:
861
+ return self.first_stage_model.encode(x)
862
+
863
+ def shared_step(self, batch, **kwargs):
864
+ x, c = self.get_input(batch, self.first_stage_key)
865
+ loss = self(x, c)
866
+ return loss
867
+
868
+ def forward(self, x, c, *args, **kwargs):
869
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
870
+ if self.model.conditioning_key is not None:
871
+ assert c is not None
872
+ if self.cond_stage_trainable:# true when use text
873
+ c = self.get_learned_conditioning(c) # c: string list -> [B, T, Context_dim]
874
+ if self.shorten_cond_schedule: # TODO: drop this option
875
+ tc = self.cond_ids[t].to(self.device)
876
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
877
+ return self.p_losses(x, c, t, *args, **kwargs)
878
+
879
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
880
+ def rescale_bbox(bbox):
881
+ x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
882
+ y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
883
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
884
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
885
+ return x0, y0, w, h
886
+
887
+ return [rescale_bbox(b) for b in bboxes]
888
+
889
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
890
+
891
+ if isinstance(cond, dict):
892
+ # hybrid case, cond is exptected to be a dict
893
+ pass
894
+ else:
895
+ if not isinstance(cond, list):
896
+ cond = [cond]
897
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
898
+ cond = {key: cond}
899
+
900
+ if hasattr(self, "split_input_params"):
901
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
902
+ assert not return_ids
903
+ ks = self.split_input_params["ks"] # eg. (128, 128)
904
+ stride = self.split_input_params["stride"] # eg. (64, 64)
905
+
906
+ h, w = x_noisy.shape[-2:]
907
+
908
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
909
+
910
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
911
+ # Reshape to img shape
912
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
913
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
914
+
915
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
916
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
917
+ c_key = next(iter(cond.keys())) # get key
918
+ c = next(iter(cond.values())) # get value
919
+ assert (len(c) == 1) # todo extend to list with more than one elem
920
+ c = c[0] # get element
921
+
922
+ c = unfold(c)
923
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
924
+
925
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
926
+
927
+ elif self.cond_stage_key == 'coordinates_bbox':
928
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
929
+
930
+ # assuming padding of unfold is always 0 and its dilation is always 1
931
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
932
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
933
+ # as we are operating on latents, we need the factor from the original image size to the
934
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
935
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
936
+ rescale_latent = 2 ** (num_downs)
937
+
938
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
939
+ # need to rescale the tl patch coordinates to be in between (0,1)
940
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
941
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
942
+ for patch_nr in range(z.shape[-1])]
943
+
944
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
945
+ patch_limits = [(x_tl, y_tl,
946
+ rescale_latent * ks[0] / full_img_w,
947
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
948
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
949
+
950
+ # tokenize crop coordinates for the bounding boxes of the respective patches
951
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
952
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
953
+ print(patch_limits_tknzd[0].shape)
954
+ # cut tknzd crop position from conditioning
955
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
956
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
957
+ print(cut_cond.shape)
958
+
959
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
960
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
961
+ print(adapted_cond.shape)
962
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
963
+ print(adapted_cond.shape)
964
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
965
+ print(adapted_cond.shape)
966
+
967
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
968
+
969
+ else:
970
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
971
+
972
+ # apply model by loop over crops
973
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
974
+ assert not isinstance(output_list[0],
975
+ tuple) # todo cant deal with multiple model outputs check this never happens
976
+
977
+ o = torch.stack(output_list, axis=-1)
978
+ o = o * weighting
979
+ # Reverse reshape to img shape
980
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
981
+ # stitch crops together
982
+ x_recon = fold(o) / normalization
983
+
984
+ else:
985
+ x_recon = self.model(x_noisy, t, **cond)
986
+
987
+ if isinstance(x_recon, tuple) and not return_ids:
988
+ return x_recon[0]
989
+ else:
990
+ return x_recon
991
+
992
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
993
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
994
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
995
+
996
+ def _prior_bpd(self, x_start):
997
+ """
998
+ Get the prior KL term for the variational lower-bound, measured in
999
+ bits-per-dim.
1000
+ This term can't be optimized, as it only depends on the encoder.
1001
+ :param x_start: the [N x C x ...] tensor of inputs.
1002
+ :return: a batch of [N] KL values (in bits), one per batch element.
1003
+ """
1004
+ batch_size = x_start.shape[0]
1005
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
1006
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
1007
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
1008
+ return mean_flat(kl_prior) / np.log(2.0)
1009
+
1010
+ def p_losses(self, x_start, cond, t, noise=None):
1011
+ noise = default(noise, lambda: torch.randn_like(x_start))
1012
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
1013
+ model_output = self.apply_model(x_noisy, t, cond)
1014
+
1015
+ loss_dict = {}
1016
+ prefix = 'train' if self.training else 'val'
1017
+
1018
+ if self.parameterization == "x0":
1019
+ target = x_start
1020
+ elif self.parameterization == "eps":
1021
+ target = noise
1022
+ else:
1023
+ raise NotImplementedError()
1024
+
1025
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
1026
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
1027
+
1028
+ logvar_t = self.logvar[t].to(self.device)
1029
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
1030
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
1031
+ if self.learn_logvar:
1032
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
1033
+ loss_dict.update({'logvar': self.logvar.data.mean()})
1034
+
1035
+ loss = self.l_simple_weight * loss.mean()
1036
+
1037
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
1038
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
1039
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
1040
+ loss += (self.original_elbo_weight * loss_vlb)
1041
+ loss_dict.update({f'{prefix}/loss': loss})
1042
+
1043
+ return loss, loss_dict
1044
+
1045
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
1046
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
1047
+ t_in = t
1048
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
1049
+
1050
+ if score_corrector is not None:
1051
+ assert self.parameterization == "eps"
1052
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
1053
+
1054
+ if return_codebook_ids:
1055
+ model_out, logits = model_out
1056
+
1057
+ if self.parameterization == "eps":
1058
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
1059
+ elif self.parameterization == "x0":
1060
+ x_recon = model_out
1061
+ else:
1062
+ raise NotImplementedError()
1063
+
1064
+ if clip_denoised:
1065
+ x_recon.clamp_(-1., 1.)
1066
+ if quantize_denoised:
1067
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
1068
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
1069
+ if return_codebook_ids:
1070
+ return model_mean, posterior_variance, posterior_log_variance, logits
1071
+ elif return_x0:
1072
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
1073
+ else:
1074
+ return model_mean, posterior_variance, posterior_log_variance
1075
+
1076
+ @torch.no_grad()
1077
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
1078
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1079
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1080
+ b, *_, device = *x.shape, x.device
1081
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1082
+ return_codebook_ids=return_codebook_ids,
1083
+ quantize_denoised=quantize_denoised,
1084
+ return_x0=return_x0,
1085
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1086
+ if return_codebook_ids:
1087
+ raise DeprecationWarning("Support dropped.")
1088
+ model_mean, _, model_log_variance, logits = outputs
1089
+ elif return_x0:
1090
+ model_mean, _, model_log_variance, x0 = outputs
1091
+ else:
1092
+ model_mean, _, model_log_variance = outputs
1093
+
1094
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
1095
+ if noise_dropout > 0.:
1096
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1097
+ # no noise when t == 0
1098
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1099
+
1100
+ if return_codebook_ids:
1101
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1102
+ if return_x0:
1103
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1104
+ else:
1105
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
1106
+
1107
+ @torch.no_grad()
1108
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
1109
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
1110
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
1111
+ log_every_t=None):
1112
+ if not log_every_t:
1113
+ log_every_t = self.log_every_t
1114
+ timesteps = self.num_timesteps
1115
+ if batch_size is not None:
1116
+ b = batch_size if batch_size is not None else shape[0]
1117
+ shape = [batch_size] + list(shape)
1118
+ else:
1119
+ b = batch_size = shape[0]
1120
+ if x_T is None:
1121
+ img = torch.randn(shape, device=self.device)
1122
+ else:
1123
+ img = x_T
1124
+ intermediates = []
1125
+ if cond is not None:
1126
+ if isinstance(cond, dict):
1127
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1128
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1129
+ else:
1130
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1131
+
1132
+ if start_T is not None:
1133
+ timesteps = min(timesteps, start_T)
1134
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1135
+ total=timesteps) if verbose else reversed(
1136
+ range(0, timesteps))
1137
+ if type(temperature) == float:
1138
+ temperature = [temperature] * timesteps
1139
+
1140
+ for i in iterator:
1141
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1142
+ if self.shorten_cond_schedule:
1143
+ assert self.model.conditioning_key != 'hybrid'
1144
+ tc = self.cond_ids[ts].to(cond.device)
1145
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1146
+
1147
+ img, x0_partial = self.p_sample(img, cond, ts,
1148
+ clip_denoised=self.clip_denoised,
1149
+ quantize_denoised=quantize_denoised, return_x0=True,
1150
+ temperature=temperature[i], noise_dropout=noise_dropout,
1151
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1152
+ if mask is not None:
1153
+ assert x0 is not None
1154
+ img_orig = self.q_sample(x0, ts)
1155
+ img = img_orig * mask + (1. - mask) * img
1156
+
1157
+ if i % log_every_t == 0 or i == timesteps - 1:
1158
+ intermediates.append(x0_partial)
1159
+ if callback: callback(i)
1160
+ if img_callback: img_callback(img, i)
1161
+ return img, intermediates
1162
+
1163
+ @torch.no_grad()
1164
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
1165
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1166
+ mask=None, x0=None, img_callback=None, start_T=None,
1167
+ log_every_t=None):
1168
+
1169
+ if not log_every_t:
1170
+ log_every_t = self.log_every_t
1171
+ device = self.betas.device
1172
+ b = shape[0]
1173
+ if x_T is None:
1174
+ img = torch.randn(shape, device=device)
1175
+ else:
1176
+ img = x_T
1177
+
1178
+ intermediates = [img]
1179
+ if timesteps is None:
1180
+ timesteps = self.num_timesteps
1181
+
1182
+ if start_T is not None:
1183
+ timesteps = min(timesteps, start_T)
1184
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1185
+ range(0, timesteps))
1186
+
1187
+ if mask is not None:
1188
+ assert x0 is not None
1189
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1190
+
1191
+ for i in iterator:
1192
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
1193
+ if self.shorten_cond_schedule:
1194
+ assert self.model.conditioning_key != 'hybrid'
1195
+ tc = self.cond_ids[ts].to(cond.device)
1196
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1197
+
1198
+ img = self.p_sample(img, cond, ts,
1199
+ clip_denoised=self.clip_denoised,
1200
+ quantize_denoised=quantize_denoised)
1201
+ if mask is not None:
1202
+ img_orig = self.q_sample(x0, ts)
1203
+ img = img_orig * mask + (1. - mask) * img
1204
+
1205
+ if i % log_every_t == 0 or i == timesteps - 1:
1206
+ intermediates.append(img)
1207
+ if callback: callback(i)
1208
+ if img_callback: img_callback(img, i)
1209
+
1210
+ if return_intermediates:
1211
+ return img, intermediates
1212
+ return img
1213
+
1214
+ @torch.no_grad()
1215
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1216
+ verbose=True, timesteps=None, quantize_denoised=False,
1217
+ mask=None, x0=None, shape=None,**kwargs):
1218
+ if shape is None:
1219
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
1220
+ if cond is not None:
1221
+ if isinstance(cond, dict):
1222
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1223
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1224
+ else:
1225
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1226
+ return self.p_sample_loop(cond,
1227
+ shape,
1228
+ return_intermediates=return_intermediates, x_T=x_T,
1229
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1230
+ mask=mask, x0=x0)
1231
+
1232
+ @torch.no_grad()
1233
+ def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
1234
+
1235
+ if ddim:
1236
+ ddim_sampler = DDIMSampler(self)
1237
+ shape = (self.channels, self.image_size, self.image_size)
1238
+ samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
1239
+ shape,cond,verbose=False,**kwargs)
1240
+
1241
+ else:
1242
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1243
+ return_intermediates=True,**kwargs)
1244
+
1245
+ return samples, intermediates
1246
+
1247
+
1248
+ @torch.no_grad()
1249
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1250
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1251
+ plot_diffusion_rows=True, **kwargs):
1252
+
1253
+ use_ddim = ddim_steps is not None
1254
+
1255
+ log = dict()
1256
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1257
+ return_first_stage_outputs=True,
1258
+ force_c_encode=True,
1259
+ return_original_cond=True,
1260
+ bs=N)
1261
+ N = min(x.shape[0], N)
1262
+ n_row = min(x.shape[0], n_row)
1263
+ log["inputs"] = x
1264
+ log["reconstruction"] = xrec
1265
+ if self.model.conditioning_key is not None:
1266
+ if hasattr(self.cond_stage_model, "decode"):
1267
+ xc = self.cond_stage_model.decode(c)
1268
+ log["conditioning"] = xc
1269
+ elif self.cond_stage_key in ["caption"]:
1270
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
1271
+ log["conditioning"] = xc
1272
+ elif self.cond_stage_key == 'class_label':
1273
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
1274
+ log['conditioning'] = xc
1275
+ elif isimage(xc):
1276
+ log["conditioning"] = xc
1277
+ if ismap(xc):
1278
+ log["original_conditioning"] = self.to_rgb(xc)
1279
+
1280
+ if plot_diffusion_rows:
1281
+ # get diffusion row
1282
+ diffusion_row = list()
1283
+ z_start = z[:n_row]
1284
+ for t in range(self.num_timesteps):
1285
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1286
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1287
+ t = t.to(self.device).long()
1288
+ noise = torch.randn_like(z_start)
1289
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1290
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1291
+
1292
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1293
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1294
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1295
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1296
+ log["diffusion_row"] = diffusion_grid
1297
+
1298
+ if sample:
1299
+ # get denoise row
1300
+ with self.ema_scope("Plotting"):
1301
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1302
+ ddim_steps=ddim_steps,eta=ddim_eta)
1303
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1304
+ x_samples = self.decode_first_stage(samples)
1305
+ log["samples"] = x_samples
1306
+ if plot_denoise_rows:
1307
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1308
+ log["denoise_row"] = denoise_grid
1309
+
1310
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1311
+ self.first_stage_model, IdentityFirstStage):
1312
+ # also display when quantizing x0 while sampling
1313
+ with self.ema_scope("Plotting Quantized Denoised"):
1314
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1315
+ ddim_steps=ddim_steps,eta=ddim_eta,
1316
+ quantize_denoised=True)
1317
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1318
+ # quantize_denoised=True)
1319
+ x_samples = self.decode_first_stage(samples.to(self.device))
1320
+ log["samples_x0_quantized"] = x_samples
1321
+
1322
+ if inpaint:
1323
+ # make a simple center square
1324
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1325
+ mask = torch.ones(N, h, w).to(self.device)
1326
+ # zeros will be filled in
1327
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1328
+ mask = mask[:, None, ...]
1329
+ with self.ema_scope("Plotting Inpaint"):
1330
+
1331
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
1332
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1333
+ x_samples = self.decode_first_stage(samples.to(self.device))
1334
+ log["samples_inpainting"] = x_samples
1335
+ log["mask"] = mask
1336
+
1337
+ # outpaint
1338
+ with self.ema_scope("Plotting Outpaint"):
1339
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
1340
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1341
+ x_samples = self.decode_first_stage(samples.to(self.device))
1342
+ log["samples_outpainting"] = x_samples
1343
+
1344
+ if plot_progressive_rows:
1345
+ with self.ema_scope("Plotting Progressives"):
1346
+ img, progressives = self.progressive_denoising(c,
1347
+ shape=(self.channels, self.image_size, self.image_size),
1348
+ batch_size=N)
1349
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1350
+ log["progressive_row"] = prog_row
1351
+
1352
+ if return_keys:
1353
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1354
+ return log
1355
+ else:
1356
+ return {key: log[key] for key in return_keys}
1357
+ return log
1358
+
1359
+ def configure_optimizers(self):
1360
+ lr = self.learning_rate
1361
+ params = list(self.model.parameters())
1362
+ if self.cond_stage_trainable:
1363
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1364
+ params = params + list(self.cond_stage_model.parameters())
1365
+ if self.learn_logvar:
1366
+ print('Diffusion model optimizing logvar')
1367
+ params.append(self.logvar)
1368
+ opt = torch.optim.AdamW(params, lr=lr)
1369
+ if self.use_scheduler:
1370
+ assert 'target' in self.scheduler_config
1371
+ scheduler = instantiate_from_config(self.scheduler_config)
1372
+
1373
+ print("Setting up LambdaLR scheduler...")
1374
+ scheduler = [
1375
+ {
1376
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1377
+ 'interval': 'step',
1378
+ 'frequency': 1
1379
+ }]
1380
+ return [opt], scheduler
1381
+ return opt
1382
+
1383
+ @torch.no_grad()
1384
+ def to_rgb(self, x):
1385
+ x = x.float()
1386
+ if not hasattr(self, "colorize"):
1387
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1388
+ x = nn.functional.conv2d(x, weight=self.colorize)
1389
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1390
+ return x
1391
+
1392
+
1393
+ class DiffusionWrapper(pl.LightningModule):
1394
+ def __init__(self, diff_model_config, conditioning_key):
1395
+ super().__init__()
1396
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1397
+ self.conditioning_key = conditioning_key # 'crossattn' for txt2image, concat for inpainting
1398
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
1399
+
1400
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
1401
+ """param x: tensor with shape:[B,C,mel_len,T]"""
1402
+ if self.conditioning_key is None:
1403
+ out = self.diffusion_model(x, t)
1404
+ elif self.conditioning_key == 'concat':
1405
+ xc = torch.cat([x] + c_concat, dim=1)# channel dim,x shape (b,3,64,64) c_concat shape(b,4,64,64)
1406
+ out = self.diffusion_model(xc, t)
1407
+ elif self.conditioning_key == 'crossattn':
1408
+ cc = torch.cat(c_crossattn, 1)# [b,seq_len,dim]
1409
+ out = self.diffusion_model(x, t, context=cc)
1410
+ elif self.conditioning_key == 'hybrid':# not implemented in the LatentDiffusion
1411
+ xc = torch.cat([x] + c_concat, dim=1)
1412
+ cc = torch.cat(c_crossattn, 1)
1413
+ out = self.diffusion_model(xc, t, context=cc)
1414
+ elif self.conditioning_key == 'adm':
1415
+ cc = c_crossattn[0]
1416
+ out = self.diffusion_model(x, t, y=cc)
1417
+ else:
1418
+ raise NotImplementedError()
1419
+
1420
+ return out
1421
+
1422
+
1423
+ class Layout2ImgDiffusion(LatentDiffusion):
1424
+ # TODO: move all layout-specific hacks to this class
1425
+ def __init__(self, cond_stage_key, *args, **kwargs):
1426
+ assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
1427
+ super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
1428
+
1429
+ def log_images(self, batch, N=8, *args, **kwargs):
1430
+ logs = super().log_images(batch=batch, N=N, *args, **kwargs)
1431
+
1432
+ key = 'train' if self.training else 'validation'
1433
+ dset = self.trainer.datamodule.datasets[key]
1434
+ mapper = dset.conditional_builders[self.cond_stage_key]
1435
+
1436
+ bbox_imgs = []
1437
+ map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
1438
+ for tknzd_bbox in batch[self.cond_stage_key][:N]:
1439
+ bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
1440
+ bbox_imgs.append(bboximg)
1441
+
1442
+ cond_img = torch.stack(bbox_imgs, dim=0)
1443
+ logs['bbox_image'] = cond_img
1444
+ return logs
ldm/models/diffusion/ddpm_audio.py ADDED
@@ -0,0 +1,1262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+ import os
9
+ import torch
10
+ import torch.nn as nn
11
+ import numpy as np
12
+ import pytorch_lightning as pl
13
+ from torch.optim.lr_scheduler import LambdaLR
14
+ from einops import rearrange, repeat
15
+ from contextlib import contextmanager
16
+ from functools import partial
17
+ from tqdm import tqdm
18
+ from torchvision.utils import make_grid
19
+ from pytorch_lightning.utilities.distributed import rank_zero_only
20
+
21
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
22
+ from ldm.modules.ema import LitEma
23
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
24
+ from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
25
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
26
+ from ldm.models.diffusion.ddim import DDIMSampler
27
+ from ldm.models.diffusion.ddpm import DDPM, disabled_train
28
+ from omegaconf import ListConfig
29
+
30
+ __conditioning_keys__ = {'concat': 'c_concat',
31
+ 'crossattn': 'c_crossattn',
32
+ 'adm': 'y'}
33
+
34
+
35
+ class LatentDiffusion_audio(DDPM):
36
+ """main class"""
37
+ def __init__(self,
38
+ first_stage_config,
39
+ cond_stage_config,
40
+ num_timesteps_cond=None,
41
+ mel_dim=80,
42
+ mel_length=848,
43
+ cond_stage_key="image",
44
+ cond_stage_trainable=False,
45
+ concat_mode=True,
46
+ cond_stage_forward=None,
47
+ conditioning_key=None,
48
+ scale_factor=1.0,
49
+ scale_by_std=False,
50
+ *args, **kwargs):
51
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
52
+ self.scale_by_std = scale_by_std
53
+ assert self.num_timesteps_cond <= kwargs['timesteps']
54
+ # for backwards compatibility after implementation of DiffusionWrapper
55
+ if conditioning_key is None:
56
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
57
+ if cond_stage_config == '__is_unconditional__':
58
+ conditioning_key = None
59
+ ckpt_path = kwargs.pop("ckpt_path", None)
60
+ ignore_keys = kwargs.pop("ignore_keys", [])
61
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
62
+ self.concat_mode = concat_mode
63
+ self.mel_dim = mel_dim
64
+ self.mel_length = mel_length
65
+ self.cond_stage_trainable = cond_stage_trainable
66
+ self.cond_stage_key = cond_stage_key
67
+ try:
68
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
69
+ except:
70
+ self.num_downs = 0
71
+ if not scale_by_std:
72
+ self.scale_factor = scale_factor
73
+ else:
74
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
75
+ self.instantiate_first_stage(first_stage_config)
76
+ self.instantiate_cond_stage(cond_stage_config)
77
+ self.cond_stage_forward = cond_stage_forward
78
+ self.clip_denoised = False
79
+ self.bbox_tokenizer = None
80
+
81
+ self.restarted_from_ckpt = False
82
+ if ckpt_path is not None:
83
+ self.init_from_ckpt(ckpt_path, ignore_keys)
84
+ self.restarted_from_ckpt = True
85
+
86
+ def make_cond_schedule(self, ):
87
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
88
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
89
+ self.cond_ids[:self.num_timesteps_cond] = ids
90
+
91
+ @rank_zero_only
92
+ @torch.no_grad()
93
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
94
+ # only for very first batch
95
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
96
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
97
+ # set rescale weight to 1./std of encodings
98
+ print("### USING STD-RESCALING ###")
99
+ x = super().get_input(batch, self.first_stage_key)
100
+ x = x.to(self.device)
101
+ encoder_posterior = self.encode_first_stage(x)
102
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
103
+ del self.scale_factor
104
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
105
+ print(f"setting self.scale_factor to {self.scale_factor}")
106
+ print("### USING STD-RESCALING ###")
107
+
108
+ def register_schedule(self,
109
+ given_betas=None, beta_schedule="linear", timesteps=1000,
110
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
111
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
112
+
113
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
114
+ if self.shorten_cond_schedule:
115
+ self.make_cond_schedule()
116
+
117
+ def instantiate_first_stage(self, config):
118
+ model = instantiate_from_config(config)
119
+ self.first_stage_model = model.eval()
120
+ self.first_stage_model.train = disabled_train
121
+ for param in self.first_stage_model.parameters():
122
+ param.requires_grad = False
123
+
124
+ def instantiate_cond_stage(self, config):
125
+ if not self.cond_stage_trainable:
126
+ if config == "__is_first_stage__":
127
+ print("Using first stage also as cond stage.")
128
+ self.cond_stage_model = self.first_stage_model
129
+ elif config == "__is_unconditional__":
130
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
131
+ self.cond_stage_model = None
132
+ # self.be_unconditional = True
133
+ else:
134
+ model = instantiate_from_config(config)
135
+ self.cond_stage_model = model.eval()
136
+ self.cond_stage_model.train = disabled_train
137
+ for param in self.cond_stage_model.parameters():
138
+ param.requires_grad = False
139
+ else:
140
+ assert config != '__is_first_stage__'
141
+ assert config != '__is_unconditional__'
142
+ model = instantiate_from_config(config)
143
+ self.cond_stage_model = model
144
+
145
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
146
+ denoise_row = []
147
+ for zd in tqdm(samples, desc=desc):
148
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
149
+ force_not_quantize=force_no_decoder_quantization))
150
+ n_imgs_per_row = len(denoise_row)
151
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
152
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
153
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
154
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
155
+ return denoise_grid
156
+
157
+ def get_first_stage_encoding(self, encoder_posterior):
158
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
159
+ z = encoder_posterior.sample()
160
+ elif isinstance(encoder_posterior, torch.Tensor):
161
+ z = encoder_posterior
162
+ else:
163
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
164
+ return self.scale_factor * z
165
+
166
+ def get_learned_conditioning(self, c):
167
+ if self.cond_stage_forward is None:
168
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
169
+ c = self.cond_stage_model.encode(c)
170
+ if isinstance(c, DiagonalGaussianDistribution):
171
+ c = c.mode()
172
+ else:
173
+ c = self.cond_stage_model(c)
174
+ else:
175
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
176
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
177
+ return c
178
+
179
+
180
+ @torch.no_grad()
181
+ def get_unconditional_conditioning(self, batch_size, null_label=None):
182
+ if null_label is not None:
183
+ xc = null_label
184
+ if isinstance(xc, ListConfig):
185
+ xc = list(xc)
186
+ if isinstance(xc, dict) or isinstance(xc, list):
187
+ c = self.get_learned_conditioning(xc)
188
+ else:
189
+ if hasattr(xc, "to"):
190
+ xc = xc.to(self.device)
191
+ c = self.get_learned_conditioning(xc)
192
+ else:
193
+ if self.cond_stage_key in ["class_label", "cls"]:
194
+ xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
195
+ return self.get_learned_conditioning(xc)
196
+ else:
197
+ raise NotImplementedError("todo")
198
+ if isinstance(c, list): # in case the encoder gives us a list
199
+ for i in range(len(c)):
200
+ c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
201
+ else:
202
+ c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
203
+ return c
204
+
205
+ def meshgrid(self, h, w):
206
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
207
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
208
+
209
+ arr = torch.cat([y, x], dim=-1)
210
+ return arr
211
+
212
+ def delta_border(self, h, w):
213
+ """
214
+ :param h: height
215
+ :param w: width
216
+ :return: normalized distance to image border,
217
+ wtith min distance = 0 at border and max dist = 0.5 at image center
218
+ """
219
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
220
+ arr = self.meshgrid(h, w) / lower_right_corner
221
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
222
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
223
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
224
+ return edge_dist
225
+
226
+ def get_weighting(self, h, w, Ly, Lx, device):
227
+ weighting = self.delta_border(h, w)
228
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
229
+ self.split_input_params["clip_max_weight"], )
230
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
231
+
232
+ if self.split_input_params["tie_braker"]:
233
+ L_weighting = self.delta_border(Ly, Lx)
234
+ L_weighting = torch.clip(L_weighting,
235
+ self.split_input_params["clip_min_tie_weight"],
236
+ self.split_input_params["clip_max_tie_weight"])
237
+
238
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
239
+ weighting = weighting * L_weighting
240
+ return weighting
241
+
242
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
243
+ """
244
+ :param x: img of size (bs, c, h, w)
245
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
246
+ """
247
+ bs, nc, h, w = x.shape
248
+
249
+ # number of crops in image
250
+ Ly = (h - kernel_size[0]) // stride[0] + 1
251
+ Lx = (w - kernel_size[1]) // stride[1] + 1
252
+
253
+ if uf == 1 and df == 1:
254
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
255
+ unfold = torch.nn.Unfold(**fold_params)
256
+
257
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
258
+
259
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
260
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
261
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
262
+
263
+ elif uf > 1 and df == 1:
264
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
265
+ unfold = torch.nn.Unfold(**fold_params)
266
+
267
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
268
+ dilation=1, padding=0,
269
+ stride=(stride[0] * uf, stride[1] * uf))
270
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
271
+
272
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
273
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
274
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
275
+
276
+ elif df > 1 and uf == 1:
277
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
278
+ unfold = torch.nn.Unfold(**fold_params)
279
+
280
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
281
+ dilation=1, padding=0,
282
+ stride=(stride[0] // df, stride[1] // df))
283
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
284
+
285
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
286
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
287
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
288
+
289
+ else:
290
+ raise NotImplementedError
291
+
292
+ return fold, unfold, normalization, weighting
293
+
294
+ @torch.no_grad()
295
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
296
+ cond_key=None, return_original_cond=False, bs=None):
297
+ x = super().get_input(batch, k)
298
+ if bs is not None:
299
+ x = x[:bs]
300
+ x = x.to(self.device)
301
+ encoder_posterior = self.encode_first_stage(x)
302
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
303
+
304
+ if self.model.conditioning_key is not None:
305
+ if cond_key is None:
306
+ cond_key = self.cond_stage_key
307
+ if cond_key != self.first_stage_key:
308
+ if cond_key in ['caption', 'coordinates_bbox']:
309
+ xc = batch[cond_key]
310
+ elif cond_key == 'class_label':
311
+ xc = batch
312
+ else:
313
+ xc = super().get_input(batch, cond_key).to(self.device)
314
+ else:
315
+ xc = x
316
+ if not self.cond_stage_trainable or force_c_encode:
317
+ if isinstance(xc, dict) or isinstance(xc, list):
318
+ # import pudb; pudb.set_trace()
319
+ c = self.get_learned_conditioning(xc)
320
+ else:
321
+ c = self.get_learned_conditioning(xc.to(self.device))
322
+ else:
323
+ c = xc
324
+ if bs is not None:
325
+ c = c[:bs]
326
+ # Testing #
327
+ if cond_key == 'masked_image':
328
+ mask = super().get_input(batch, "mask")
329
+ cc = torch.nn.functional.interpolate(mask, size=c.shape[-2:]) # [B, 1, 10, 106]
330
+ c = torch.cat((c, cc), dim=1) # [B, 5, 10, 106]
331
+ # Testing #
332
+ if self.use_positional_encodings:
333
+ pos_x, pos_y = self.compute_latent_shifts(batch)
334
+ ckey = __conditioning_keys__[self.model.conditioning_key]
335
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
336
+
337
+ else:
338
+ c = None
339
+ xc = None
340
+ if self.use_positional_encodings:
341
+ pos_x, pos_y = self.compute_latent_shifts(batch)
342
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
343
+ out = [z, c]
344
+ if return_first_stage_outputs:
345
+ xrec = self.decode_first_stage(z)
346
+ out.extend([x, xrec])
347
+ if return_original_cond:
348
+ out.append(xc)
349
+ return out
350
+
351
+ @torch.no_grad()
352
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
353
+ if predict_cids:
354
+ if z.dim() == 4:
355
+ z = torch.argmax(z.exp(), dim=1).long()
356
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
357
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
358
+
359
+ z = 1. / self.scale_factor * z
360
+
361
+ if hasattr(self, "split_input_params"):
362
+ if self.split_input_params["patch_distributed_vq"]:
363
+ ks = self.split_input_params["ks"] # eg. (128, 128)
364
+ stride = self.split_input_params["stride"] # eg. (64, 64)
365
+ uf = self.split_input_params["vqf"]
366
+ bs, nc, h, w = z.shape
367
+ if ks[0] > h or ks[1] > w:
368
+ ks = (min(ks[0], h), min(ks[1], w))
369
+ print("reducing Kernel")
370
+
371
+ if stride[0] > h or stride[1] > w:
372
+ stride = (min(stride[0], h), min(stride[1], w))
373
+ print("reducing stride")
374
+
375
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
376
+
377
+ z = unfold(z) # (bn, nc * prod(**ks), L)
378
+ # 1. Reshape to img shape
379
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
380
+
381
+ # 2. apply model loop over last dim
382
+ if isinstance(self.first_stage_model, VQModelInterface):
383
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
384
+ force_not_quantize=predict_cids or force_not_quantize)
385
+ for i in range(z.shape[-1])]
386
+ else:
387
+
388
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
389
+ for i in range(z.shape[-1])]
390
+
391
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
392
+ o = o * weighting
393
+ # Reverse 1. reshape to img shape
394
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
395
+ # stitch crops together
396
+ decoded = fold(o)
397
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
398
+ return decoded
399
+ else:
400
+ if isinstance(self.first_stage_model, VQModelInterface):
401
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
402
+ else:
403
+ return self.first_stage_model.decode(z)
404
+
405
+ else:
406
+ if isinstance(self.first_stage_model, VQModelInterface):
407
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
408
+ else:
409
+ return self.first_stage_model.decode(z)
410
+
411
+ # same as above but without decorator
412
+ def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
413
+ if predict_cids:
414
+ if z.dim() == 4:
415
+ z = torch.argmax(z.exp(), dim=1).long()
416
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
417
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
418
+
419
+ z = 1. / self.scale_factor * z
420
+
421
+ if hasattr(self, "split_input_params"):
422
+ if self.split_input_params["patch_distributed_vq"]:
423
+ ks = self.split_input_params["ks"] # eg. (128, 128)
424
+ stride = self.split_input_params["stride"] # eg. (64, 64)
425
+ uf = self.split_input_params["vqf"]
426
+ bs, nc, h, w = z.shape
427
+ if ks[0] > h or ks[1] > w:
428
+ ks = (min(ks[0], h), min(ks[1], w))
429
+ print("reducing Kernel")
430
+
431
+ if stride[0] > h or stride[1] > w:
432
+ stride = (min(stride[0], h), min(stride[1], w))
433
+ print("reducing stride")
434
+
435
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
436
+
437
+ z = unfold(z) # (bn, nc * prod(**ks), L)
438
+ # 1. Reshape to img shape
439
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
440
+
441
+ # 2. apply model loop over last dim
442
+ if isinstance(self.first_stage_model, VQModelInterface):
443
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
444
+ force_not_quantize=predict_cids or force_not_quantize)
445
+ for i in range(z.shape[-1])]
446
+ else:
447
+
448
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
449
+ for i in range(z.shape[-1])]
450
+
451
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
452
+ o = o * weighting
453
+ # Reverse 1. reshape to img shape
454
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
455
+ # stitch crops together
456
+ decoded = fold(o)
457
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
458
+ return decoded
459
+ else:
460
+ if isinstance(self.first_stage_model, VQModelInterface):
461
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
462
+ else:
463
+ return self.first_stage_model.decode(z)
464
+
465
+ else:
466
+ if isinstance(self.first_stage_model, VQModelInterface):
467
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
468
+ else:
469
+ return self.first_stage_model.decode(z)
470
+
471
+ @torch.no_grad()
472
+ def encode_first_stage(self, x):
473
+ if hasattr(self, "split_input_params"):
474
+ if self.split_input_params["patch_distributed_vq"]:
475
+ ks = self.split_input_params["ks"] # eg. (128, 128)
476
+ stride = self.split_input_params["stride"] # eg. (64, 64)
477
+ df = self.split_input_params["vqf"]
478
+ self.split_input_params['original_image_size'] = x.shape[-2:]
479
+ bs, nc, h, w = x.shape
480
+ if ks[0] > h or ks[1] > w:
481
+ ks = (min(ks[0], h), min(ks[1], w))
482
+ print("reducing Kernel")
483
+
484
+ if stride[0] > h or stride[1] > w:
485
+ stride = (min(stride[0], h), min(stride[1], w))
486
+ print("reducing stride")
487
+
488
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
489
+ z = unfold(x) # (bn, nc * prod(**ks), L)
490
+ # Reshape to img shape
491
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
492
+
493
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
494
+ for i in range(z.shape[-1])]
495
+
496
+ o = torch.stack(output_list, axis=-1)
497
+ o = o * weighting
498
+
499
+ # Reverse reshape to img shape
500
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
501
+ # stitch crops together
502
+ decoded = fold(o)
503
+ decoded = decoded / normalization
504
+ return decoded
505
+
506
+ else:
507
+ return self.first_stage_model.encode(x)
508
+ else:
509
+ return self.first_stage_model.encode(x)
510
+
511
+ def shared_step(self, batch, **kwargs):
512
+ x, c = self.get_input(batch, self.first_stage_key)
513
+ loss = self(x, c)
514
+ return loss
515
+
516
+ def test_step(self,batch,batch_idx):
517
+ cond = batch[self.cond_stage_key] * self.test_repeat
518
+ cond = self.get_learned_conditioning(cond) # c: string -> [B, T, Context_dim]
519
+ batch_size = len(cond)
520
+ enc_emb = self.sample(cond,batch_size,timesteps=self.test_numsteps)# shape = [batch_size,self.channels,self.mel_dim,self.mel_length]
521
+ xrec = self.decode_first_stage(enc_emb)
522
+ reconstructions = (xrec + 1)/2 # to mel scale
523
+ test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
524
+ savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
525
+ if not os.path.exists(savedir):
526
+ os.makedirs(savedir)
527
+
528
+ file_names = batch['f_name']
529
+ nfiles = len(file_names)
530
+ reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
531
+ for k in range(reconstructions.shape[0]):
532
+ b,repeat = k % nfiles, k // nfiles
533
+ vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
534
+ v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
535
+ save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition
536
+ np.save(save_img_path,reconstructions[b])
537
+
538
+ return None
539
+
540
+ def forward(self, x, c, *args, **kwargs):
541
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
542
+ if self.model.conditioning_key is not None:
543
+ assert c is not None
544
+ if self.cond_stage_trainable:
545
+ c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim]
546
+ if self.shorten_cond_schedule: # TODO: drop this option
547
+ tc = self.cond_ids[t].to(self.device)
548
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
549
+ return self.p_losses(x, c, t, *args, **kwargs)
550
+
551
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
552
+ def rescale_bbox(bbox):
553
+ x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
554
+ y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
555
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
556
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
557
+ return x0, y0, w, h
558
+
559
+ return [rescale_bbox(b) for b in bboxes]
560
+
561
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
562
+
563
+ if isinstance(cond, dict):
564
+ # hybrid case, cond is exptected to be a dict
565
+ pass
566
+ else:
567
+ if not isinstance(cond, list):
568
+ cond = [cond]
569
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
570
+ cond = {key: cond}
571
+
572
+ if hasattr(self, "split_input_params"):
573
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
574
+ assert not return_ids
575
+ ks = self.split_input_params["ks"] # eg. (128, 128)
576
+ stride = self.split_input_params["stride"] # eg. (64, 64)
577
+
578
+ h, w = x_noisy.shape[-2:]
579
+
580
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
581
+
582
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
583
+ # Reshape to img shape
584
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
585
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
586
+
587
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
588
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
589
+ c_key = next(iter(cond.keys())) # get key
590
+ c = next(iter(cond.values())) # get value
591
+ assert (len(c) == 1) # todo extend to list with more than one elem
592
+ c = c[0] # get element
593
+
594
+ c = unfold(c)
595
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
596
+
597
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
598
+
599
+ elif self.cond_stage_key == 'coordinates_bbox':
600
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
601
+
602
+ # assuming padding of unfold is always 0 and its dilation is always 1
603
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
604
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
605
+ # as we are operating on latents, we need the factor from the original image size to the
606
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
607
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
608
+ rescale_latent = 2 ** (num_downs)
609
+
610
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
611
+ # need to rescale the tl patch coordinates to be in between (0,1)
612
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
613
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
614
+ for patch_nr in range(z.shape[-1])]
615
+
616
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
617
+ patch_limits = [(x_tl, y_tl,
618
+ rescale_latent * ks[0] / full_img_w,
619
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
620
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
621
+
622
+ # tokenize crop coordinates for the bounding boxes of the respective patches
623
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
624
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
625
+ print(patch_limits_tknzd[0].shape)
626
+ # cut tknzd crop position from conditioning
627
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
628
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
629
+ print(cut_cond.shape)
630
+
631
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
632
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
633
+ print(adapted_cond.shape)
634
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
635
+ print(adapted_cond.shape)
636
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
637
+ print(adapted_cond.shape)
638
+
639
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
640
+
641
+ else:
642
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
643
+
644
+ # apply model by loop over crops
645
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
646
+ assert not isinstance(output_list[0],
647
+ tuple) # todo cant deal with multiple model outputs check this never happens
648
+
649
+ o = torch.stack(output_list, axis=-1)
650
+ o = o * weighting
651
+ # Reverse reshape to img shape
652
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
653
+ # stitch crops together
654
+ x_recon = fold(o) / normalization
655
+
656
+ else:
657
+ x_recon = self.model(x_noisy, t, **cond)
658
+
659
+ if isinstance(x_recon, tuple) and not return_ids:
660
+ return x_recon[0]
661
+ else:
662
+ return x_recon
663
+
664
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
665
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
666
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
667
+
668
+ def _prior_bpd(self, x_start):
669
+ """
670
+ Get the prior KL term for the variational lower-bound, measured in
671
+ bits-per-dim.
672
+ This term can't be optimized, as it only depends on the encoder.
673
+ :param x_start: the [N x C x ...] tensor of inputs.
674
+ :return: a batch of [N] KL values (in bits), one per batch element.
675
+ """
676
+ batch_size = x_start.shape[0]
677
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
678
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
679
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
680
+ return mean_flat(kl_prior) / np.log(2.0)
681
+
682
+ def p_losses(self, x_start, cond, t, noise=None):
683
+ noise = default(noise, lambda: torch.randn_like(x_start))
684
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
685
+ model_output = self.apply_model(x_noisy, t, cond)
686
+
687
+ loss_dict = {}
688
+ prefix = 'train' if self.training else 'val'
689
+
690
+ if self.parameterization == "x0":
691
+ target = x_start
692
+ elif self.parameterization == "eps":
693
+ target = noise
694
+ else:
695
+ raise NotImplementedError()
696
+
697
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
698
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
699
+
700
+ logvar_t = self.logvar[t].to(self.device)
701
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
702
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
703
+ if self.learn_logvar:
704
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
705
+ loss_dict.update({'logvar': self.logvar.data.mean()})
706
+
707
+ loss = self.l_simple_weight * loss.mean()
708
+
709
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
710
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
711
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
712
+ loss += (self.original_elbo_weight * loss_vlb)
713
+ loss_dict.update({f'{prefix}/loss': loss})
714
+
715
+ return loss, loss_dict
716
+
717
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
718
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
719
+ t_in = t
720
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
721
+
722
+ if score_corrector is not None:
723
+ assert self.parameterization == "eps"
724
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
725
+
726
+ if return_codebook_ids:
727
+ model_out, logits = model_out
728
+
729
+ if self.parameterization == "eps":
730
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
731
+ elif self.parameterization == "x0":
732
+ x_recon = model_out
733
+ else:
734
+ raise NotImplementedError()
735
+
736
+ if clip_denoised:
737
+ x_recon.clamp_(-1., 1.)
738
+ if quantize_denoised:
739
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
740
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
741
+ if return_codebook_ids:
742
+ return model_mean, posterior_variance, posterior_log_variance, logits
743
+ elif return_x0:
744
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
745
+ else:
746
+ return model_mean, posterior_variance, posterior_log_variance
747
+
748
+ @torch.no_grad()
749
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
750
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
751
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
752
+ b, *_, device = *x.shape, x.device
753
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
754
+ return_codebook_ids=return_codebook_ids,
755
+ quantize_denoised=quantize_denoised,
756
+ return_x0=return_x0,
757
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
758
+ if return_codebook_ids:
759
+ raise DeprecationWarning("Support dropped.")
760
+ model_mean, _, model_log_variance, logits = outputs
761
+ elif return_x0:
762
+ model_mean, _, model_log_variance, x0 = outputs
763
+ else:
764
+ model_mean, _, model_log_variance = outputs
765
+
766
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
767
+ if noise_dropout > 0.:
768
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
769
+ # no noise when t == 0
770
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
771
+
772
+ if return_codebook_ids:
773
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
774
+ if return_x0:
775
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
776
+ else:
777
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
778
+
779
+ @torch.no_grad()
780
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
781
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
782
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
783
+ log_every_t=None):
784
+ if not log_every_t:
785
+ log_every_t = self.log_every_t
786
+ timesteps = self.num_timesteps
787
+ if batch_size is not None:
788
+ b = batch_size if batch_size is not None else shape[0]
789
+ shape = [batch_size] + list(shape)
790
+ else:
791
+ b = batch_size = shape[0]
792
+ if x_T is None:
793
+ img = torch.randn(shape, device=self.device)
794
+ else:
795
+ img = x_T
796
+ intermediates = []
797
+ if cond is not None:
798
+ if isinstance(cond, dict):
799
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
800
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
801
+ else:
802
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
803
+
804
+ if start_T is not None:
805
+ timesteps = min(timesteps, start_T)
806
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
807
+ total=timesteps) if verbose else reversed(
808
+ range(0, timesteps))
809
+ if type(temperature) == float:
810
+ temperature = [temperature] * timesteps
811
+
812
+ for i in iterator:
813
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
814
+ if self.shorten_cond_schedule:
815
+ assert self.model.conditioning_key != 'hybrid'
816
+ tc = self.cond_ids[ts].to(cond.device)
817
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
818
+
819
+ img, x0_partial = self.p_sample(img, cond, ts,
820
+ clip_denoised=self.clip_denoised,
821
+ quantize_denoised=quantize_denoised, return_x0=True,
822
+ temperature=temperature[i], noise_dropout=noise_dropout,
823
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
824
+ if mask is not None:
825
+ assert x0 is not None
826
+ img_orig = self.q_sample(x0, ts)
827
+ img = img_orig * mask + (1. - mask) * img
828
+
829
+ if i % log_every_t == 0 or i == timesteps - 1:
830
+ intermediates.append(x0_partial)
831
+ if callback: callback(i)
832
+ if img_callback: img_callback(img, i)
833
+ return img, intermediates
834
+
835
+ @torch.no_grad()
836
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
837
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
838
+ mask=None, x0=None, img_callback=None, start_T=None,
839
+ log_every_t=None):
840
+
841
+ if not log_every_t:
842
+ log_every_t = self.log_every_t
843
+ device = self.betas.device
844
+ b = shape[0]
845
+ if x_T is None:
846
+ img = torch.randn(shape, device=device)
847
+ else:
848
+ img = x_T
849
+
850
+ intermediates = [img]
851
+ if timesteps is None:
852
+ timesteps = self.num_timesteps
853
+
854
+ if start_T is not None:
855
+ timesteps = min(timesteps, start_T)
856
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
857
+ range(0, timesteps))
858
+
859
+ if mask is not None:
860
+ assert x0 is not None
861
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
862
+
863
+ for i in iterator:
864
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
865
+ if self.shorten_cond_schedule:
866
+ assert self.model.conditioning_key != 'hybrid'
867
+ tc = self.cond_ids[ts].to(cond.device)
868
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
869
+
870
+ img = self.p_sample(img, cond, ts,
871
+ clip_denoised=self.clip_denoised,
872
+ quantize_denoised=quantize_denoised)
873
+ if mask is not None:
874
+ img_orig = self.q_sample(x0, ts)
875
+ img = img_orig * mask + (1. - mask) * img
876
+
877
+ if i % log_every_t == 0 or i == timesteps - 1:
878
+ intermediates.append(img)
879
+ if callback: callback(i)
880
+ if img_callback: img_callback(img, i)
881
+
882
+ if return_intermediates:
883
+ return img, intermediates
884
+ return img
885
+
886
+ @torch.no_grad()
887
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
888
+ verbose=True, timesteps=None, quantize_denoised=False,
889
+ mask=None, x0=None, shape=None,**kwargs):
890
+ if shape is None:
891
+ shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
892
+ if cond is not None:
893
+ if isinstance(cond, dict):
894
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
895
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
896
+ else:
897
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
898
+ return self.p_sample_loop(cond,
899
+ shape,
900
+ return_intermediates=return_intermediates, x_T=x_T,
901
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
902
+ mask=mask, x0=x0)
903
+
904
+ @torch.no_grad()
905
+ def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
906
+
907
+ if ddim:
908
+ ddim_sampler = DDIMSampler(self)
909
+ shape = (self.channels, self.mel_dim, self.mel_length)
910
+ samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
911
+ shape,cond,verbose=False,**kwargs)
912
+
913
+ else:
914
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
915
+ return_intermediates=True,**kwargs)
916
+
917
+ return samples, intermediates
918
+
919
+
920
+ @torch.no_grad()
921
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
922
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
923
+ plot_diffusion_rows=True, **kwargs):
924
+
925
+ use_ddim = ddim_steps is not None
926
+
927
+ log = dict()
928
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
929
+ return_first_stage_outputs=True,
930
+ force_c_encode=True,
931
+ return_original_cond=True,
932
+ bs=N)
933
+ N = min(x.shape[0], N)
934
+ n_row = min(x.shape[0], n_row)
935
+ log["inputs"] = x
936
+ log["reconstruction"] = xrec
937
+ if self.model.conditioning_key is not None:
938
+ if hasattr(self.cond_stage_model, "decode") and self.cond_stage_key != "masked_image":
939
+ xc = self.cond_stage_model.decode(c)
940
+ log["conditioning"] = xc
941
+ elif self.cond_stage_key == "masked_image":
942
+ log["mask"] = c[:, -1, :, :][:, None, :, :]
943
+ xc = self.cond_stage_model.decode(c[:, :self.cond_stage_model.embed_dim, :, :])
944
+ log["conditioning"] = xc
945
+ elif self.cond_stage_key in ["caption"]:
946
+ xc = log_txt_as_img((256, 256), batch["caption"])
947
+ log["conditioning"] = xc
948
+ elif self.cond_stage_key == 'class_label':
949
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
950
+ log['conditioning'] = xc
951
+ elif isimage(xc):
952
+ log["conditioning"] = xc
953
+ if ismap(xc):
954
+ log["original_conditioning"] = self.to_rgb(xc)
955
+
956
+ if plot_diffusion_rows:
957
+ # get diffusion row
958
+ diffusion_row = list()
959
+ z_start = z[:n_row]
960
+ for t in range(self.num_timesteps):
961
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
962
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
963
+ t = t.to(self.device).long()
964
+ noise = torch.randn_like(z_start)
965
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
966
+ diffusion_row.append(self.decode_first_stage(z_noisy))
967
+
968
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
969
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
970
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
971
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
972
+ log["diffusion_row"] = diffusion_grid
973
+
974
+ if sample:
975
+ # get denoise row
976
+ with self.ema_scope("Plotting"):
977
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
978
+ ddim_steps=ddim_steps,eta=ddim_eta)
979
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
980
+ x_samples = self.decode_first_stage(samples)
981
+ log["samples"] = x_samples
982
+ if plot_denoise_rows:
983
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
984
+ log["denoise_row"] = denoise_grid
985
+
986
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
987
+ self.first_stage_model, IdentityFirstStage):
988
+ # also display when quantizing x0 while sampling
989
+ with self.ema_scope("Plotting Quantized Denoised"):
990
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
991
+ ddim_steps=ddim_steps,eta=ddim_eta,
992
+ quantize_denoised=True)
993
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
994
+ # quantize_denoised=True)
995
+ x_samples = self.decode_first_stage(samples.to(self.device))
996
+ log["samples_x0_quantized"] = x_samples
997
+
998
+ if inpaint:
999
+ # make a simple center square
1000
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1001
+ mask = torch.ones(N, h, w).to(self.device)
1002
+ # zeros will be filled in
1003
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1004
+ mask = mask[:, None, ...]
1005
+ with self.ema_scope("Plotting Inpaint"):
1006
+
1007
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
1008
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1009
+ x_samples = self.decode_first_stage(samples.to(self.device))
1010
+ log["samples_inpainting"] = x_samples
1011
+ log["mask_inpainting"] = mask
1012
+
1013
+ # outpaint
1014
+ mask = 1 - mask
1015
+ with self.ema_scope("Plotting Outpaint"):
1016
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
1017
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1018
+ x_samples = self.decode_first_stage(samples.to(self.device))
1019
+ log["samples_outpainting"] = x_samples
1020
+ log["mask_outpainting"] = mask
1021
+
1022
+ if plot_progressive_rows:
1023
+ with self.ema_scope("Plotting Progressives"):
1024
+ img, progressives = self.progressive_denoising(c,
1025
+ shape=(self.channels, self.mel_dim, self.mel_length),
1026
+ batch_size=N)
1027
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1028
+ log["progressive_row"] = prog_row
1029
+
1030
+ if return_keys:
1031
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1032
+ return log
1033
+ else:
1034
+ return {key: log[key] for key in return_keys}
1035
+ return log
1036
+
1037
+ def configure_optimizers(self):
1038
+ lr = self.learning_rate
1039
+ params = list(self.model.parameters())
1040
+ if self.cond_stage_trainable:
1041
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1042
+ params = params + list(self.cond_stage_model.parameters())
1043
+ if self.learn_logvar:
1044
+ print('Diffusion model optimizing logvar')
1045
+ params.append(self.logvar)
1046
+ opt = torch.optim.AdamW(params, lr=lr)
1047
+ if self.use_scheduler:
1048
+ assert 'target' in self.scheduler_config
1049
+ scheduler = instantiate_from_config(self.scheduler_config)
1050
+
1051
+ print("Setting up LambdaLR scheduler...")
1052
+ scheduler = [
1053
+ {
1054
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1055
+ 'interval': 'step',
1056
+ 'frequency': 1
1057
+ }]
1058
+ return [opt], scheduler
1059
+ return opt
1060
+
1061
+ @torch.no_grad()
1062
+ def to_rgb(self, x):
1063
+ x = x.float()
1064
+ if not hasattr(self, "colorize"):
1065
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1066
+ x = nn.functional.conv2d(x, weight=self.colorize)
1067
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1068
+ return x
1069
+
1070
+
1071
+ class LatentFinetuneDiffusion(LatentDiffusion_audio):
1072
+ """
1073
+ Basis for different finetunas, such as inpainting or depth2image
1074
+ To disable finetuning mode, set finetune_keys to None
1075
+ """
1076
+
1077
+ def __init__(self,
1078
+ concat_keys: tuple,
1079
+ finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
1080
+ "model_ema.diffusion_modelinput_blocks00weight"
1081
+ ),
1082
+ keep_finetune_dims=4,
1083
+ # if model was trained without concat mode before and we would like to keep these channels
1084
+ c_concat_log_start=None, # to log reconstruction of c_concat codes
1085
+ c_concat_log_end=None,
1086
+ *args, **kwargs
1087
+ ):
1088
+ ckpt_path = kwargs.pop("ckpt_path", None)
1089
+ ignore_keys = kwargs.pop("ignore_keys", list())
1090
+ super().__init__(*args, **kwargs)
1091
+ self.finetune_keys = finetune_keys
1092
+ self.concat_keys = concat_keys
1093
+ self.keep_dims = keep_finetune_dims
1094
+ self.c_concat_log_start = c_concat_log_start
1095
+ self.c_concat_log_end = c_concat_log_end
1096
+
1097
+ if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
1098
+ if exists(ckpt_path):
1099
+ self.init_from_ckpt(ckpt_path, ignore_keys)
1100
+
1101
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
1102
+ sd = torch.load(path, map_location="cpu")
1103
+ if "state_dict" in list(sd.keys()):
1104
+ sd = sd["state_dict"]
1105
+ keys = list(sd.keys())
1106
+
1107
+ for k in keys:
1108
+ for ik in ignore_keys:
1109
+ if k.startswith(ik):
1110
+ print("Deleting key {} from state_dict.".format(k))
1111
+ del sd[k]
1112
+
1113
+ # make it explicit, finetune by including extra input channels
1114
+ if exists(self.finetune_keys) and k in self.finetune_keys:
1115
+ new_entry = None
1116
+ for name, param in self.named_parameters():
1117
+ if name in self.finetune_keys:
1118
+ print(
1119
+ f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
1120
+ new_entry = torch.zeros_like(param) # zero init
1121
+ assert exists(new_entry), 'did not find matching parameter to modify'
1122
+ new_entry[:, :self.keep_dims, ...] = sd[k]
1123
+ sd[k] = new_entry
1124
+
1125
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False)
1126
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
1127
+ if len(missing) > 0:
1128
+ print(f"Missing Keys: {missing}")
1129
+ if len(unexpected) > 0:
1130
+ print(f"Unexpected Keys: {unexpected}")
1131
+
1132
+ @torch.no_grad()
1133
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1134
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1135
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1136
+ use_ema_scope=True,
1137
+ **kwargs):
1138
+ use_ddim = ddim_steps is not None
1139
+
1140
+ log = dict()
1141
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
1142
+ c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
1143
+ N = min(x.shape[0], N)
1144
+ n_row = min(x.shape[0], n_row)
1145
+ log["inputs"] = x
1146
+ log["reconstruction"] = xrec
1147
+ if self.model.conditioning_key is not None:
1148
+ if hasattr(self.cond_stage_model, "decode"):
1149
+ xc = self.cond_stage_model.decode(c)
1150
+ log["conditioning"] = xc
1151
+ elif self.cond_stage_key in ["caption"]:
1152
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
1153
+ log["conditioning"] = xc
1154
+ elif self.cond_stage_key == 'class_label':
1155
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
1156
+ log['conditioning'] = xc
1157
+ elif isimage(xc):
1158
+ log["conditioning"] = xc
1159
+ if ismap(xc):
1160
+ log["original_conditioning"] = self.to_rgb(xc)
1161
+
1162
+ if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
1163
+ log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
1164
+
1165
+ if plot_diffusion_rows:
1166
+ # get diffusion row
1167
+ diffusion_row = list()
1168
+ z_start = z[:n_row]
1169
+ for t in range(self.num_timesteps):
1170
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1171
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1172
+ t = t.to(self.device).long()
1173
+ noise = torch.randn_like(z_start)
1174
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1175
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1176
+
1177
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1178
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1179
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1180
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1181
+ log["diffusion_row"] = diffusion_grid
1182
+
1183
+ if sample:
1184
+ # get denoise row
1185
+ with self.ema_scope("Sampling"):
1186
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1187
+ batch_size=N, ddim=use_ddim,
1188
+ ddim_steps=ddim_steps, eta=ddim_eta)
1189
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1190
+ x_samples = self.decode_first_stage(samples)
1191
+ log["samples"] = x_samples
1192
+ if plot_denoise_rows:
1193
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1194
+ log["denoise_row"] = denoise_grid
1195
+
1196
+ if unconditional_guidance_scale > 1.0:
1197
+ uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1198
+ uc_cat = c_cat
1199
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
1200
+ with self.ema_scope("Sampling with classifier-free guidance"):
1201
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1202
+ batch_size=N, ddim=use_ddim,
1203
+ ddim_steps=ddim_steps, eta=ddim_eta,
1204
+ unconditional_guidance_scale=unconditional_guidance_scale,
1205
+ unconditional_conditioning=uc_full,
1206
+ )
1207
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1208
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1209
+
1210
+ return log
1211
+
1212
+
1213
+ class LatentInpaintDiffusion(LatentFinetuneDiffusion):
1214
+ """
1215
+ can either run as pure inpainting model (only concat mode) or with mixed conditionings,
1216
+ e.g. mask as concat and text via cross-attn.
1217
+ To disable finetuning mode, set finetune_keys to None
1218
+ """
1219
+
1220
+ def __init__(self,
1221
+ concat_keys=("mask", "masked_image"),
1222
+ masked_image_key="masked_image",
1223
+ *args, **kwargs
1224
+ ):
1225
+ super().__init__(concat_keys, *args, **kwargs)
1226
+ self.masked_image_key = masked_image_key
1227
+ assert self.masked_image_key in concat_keys
1228
+
1229
+ @torch.no_grad()
1230
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1231
+ # note: restricted to non-trainable encoders currently
1232
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
1233
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1234
+ force_c_encode=True, return_original_cond=True, bs=bs)
1235
+
1236
+ assert exists(self.concat_keys)
1237
+ c_cat = list()
1238
+ for ck in self.concat_keys:
1239
+ if len(batch[ck].shape) == 3:
1240
+ batch[ck] = batch[ck][..., None]
1241
+ cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1242
+ if bs is not None:
1243
+ cc = cc[:bs]
1244
+ cc = cc.to(self.device)
1245
+ bchw = z.shape
1246
+ if ck != self.masked_image_key:
1247
+ cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
1248
+ else:
1249
+ cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
1250
+ c_cat.append(cc)
1251
+ c_cat = torch.cat(c_cat, dim=1)
1252
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1253
+ if return_first_stage_outputs:
1254
+ return z, all_conds, x, xrec, xc
1255
+ return z, all_conds
1256
+
1257
+ @torch.no_grad()
1258
+ def log_images(self, *args, **kwargs):
1259
+ log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
1260
+ log["masked_image"] = rearrange(args[0]["masked_image"],
1261
+ 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1262
+ return log
ldm/models/diffusion/ddpm_audio_inpaint.py ADDED
@@ -0,0 +1,1081 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+ import os
9
+ import torch
10
+ import torch.nn as nn
11
+ import numpy as np
12
+ import pytorch_lightning as pl
13
+ from torch.optim.lr_scheduler import LambdaLR
14
+ from einops import rearrange, repeat
15
+ from contextlib import contextmanager
16
+ from functools import partial
17
+ from tqdm import tqdm
18
+ from torchvision.utils import make_grid
19
+ from pytorch_lightning.utilities.distributed import rank_zero_only
20
+
21
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
22
+ from ldm.modules.ema import LitEma
23
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
24
+ from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
25
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
26
+ from ldm.models.diffusion.ddim import DDIMSampler
27
+ from ldm.models.diffusion.ddpm import DDPM, disabled_train
28
+
29
+ __conditioning_keys__ = {'concat': 'c_concat',
30
+ 'crossattn': 'c_crossattn',
31
+ 'adm': 'y'}
32
+
33
+ # add mel_dim and mel_length params to ensure correct shape
34
+ class LatentDiffusion_audioinpaint(DDPM):
35
+ """main class"""
36
+ def __init__(self,
37
+ first_stage_config,
38
+ cond_stage_config,
39
+ num_timesteps_cond=None,
40
+ mel_dim=80,
41
+ mel_length=848,
42
+ cond_stage_key="image",
43
+ cond_stage_trainable=False,
44
+ concat_mode=True,
45
+ cond_stage_forward=None,
46
+ conditioning_key=None,
47
+ scale_factor=1.0,
48
+ scale_by_std=False,
49
+ test_repeat=1,
50
+ test_numsteps = None,
51
+ *args, **kwargs):
52
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
53
+ self.scale_by_std = scale_by_std
54
+ assert self.num_timesteps_cond <= kwargs['timesteps']
55
+ # for backwards compatibility after implementation of DiffusionWrapper
56
+ if conditioning_key is None:
57
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
58
+ if cond_stage_config == '__is_unconditional__':
59
+ conditioning_key = None
60
+ ckpt_path = kwargs.pop("ckpt_path", None)
61
+ ignore_keys = kwargs.pop("ignore_keys", [])
62
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
63
+ self.test_repeat = test_repeat
64
+ if test_numsteps == None:
65
+ self.test_numsteps = self.num_timesteps
66
+ self.concat_mode = concat_mode
67
+ self.mel_dim = mel_dim
68
+ self.mel_length = mel_length
69
+ self.cond_stage_trainable = cond_stage_trainable
70
+ self.cond_stage_key = cond_stage_key
71
+ try:
72
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
73
+ except:
74
+ self.num_downs = 0
75
+ if not scale_by_std:
76
+ self.scale_factor = scale_factor
77
+ else:
78
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
79
+ self.instantiate_first_stage(first_stage_config)
80
+ self.instantiate_cond_stage(cond_stage_config)
81
+ self.cond_stage_forward = cond_stage_forward
82
+ self.clip_denoised = False
83
+ self.bbox_tokenizer = None
84
+
85
+ self.restarted_from_ckpt = False
86
+ if ckpt_path is not None:
87
+ self.init_from_ckpt(ckpt_path, ignore_keys)
88
+ self.restarted_from_ckpt = True
89
+
90
+ def make_cond_schedule(self, ):
91
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
92
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
93
+ self.cond_ids[:self.num_timesteps_cond] = ids
94
+
95
+ @rank_zero_only
96
+ @torch.no_grad()
97
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
98
+ # only for very first batch
99
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
100
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
101
+ # set rescale weight to 1./std of encodings
102
+ print("### USING STD-RESCALING ###")
103
+ x = super().get_input(batch, self.first_stage_key)
104
+ x = x.to(self.device)
105
+ encoder_posterior = self.encode_first_stage(x)
106
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
107
+ del self.scale_factor
108
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
109
+ print(f"setting self.scale_factor to {self.scale_factor}")
110
+ print("### USING STD-RESCALING ###")
111
+
112
+ def register_schedule(self,
113
+ given_betas=None, beta_schedule="linear", timesteps=1000,
114
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
115
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
116
+
117
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
118
+ if self.shorten_cond_schedule:
119
+ self.make_cond_schedule()
120
+
121
+ def instantiate_first_stage(self, config):
122
+ model = instantiate_from_config(config)
123
+ self.first_stage_model = model.eval()
124
+ self.first_stage_model.train = disabled_train
125
+ for param in self.first_stage_model.parameters():
126
+ param.requires_grad = False
127
+
128
+ def instantiate_cond_stage(self, config):
129
+ if not self.cond_stage_trainable:
130
+ if config == "__is_first_stage__":# for no_text inpainting task
131
+ print("Using first stage also as cond stage.")
132
+ self.cond_stage_model = self.first_stage_model
133
+ elif config == "__is_unconditional__":# for unconditional image generation such as human face、ImageNet
134
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
135
+ self.cond_stage_model = None
136
+ # self.be_unconditional = True
137
+ else:
138
+ model = instantiate_from_config(config)
139
+ self.cond_stage_model = model.eval()
140
+ self.cond_stage_model.train = disabled_train
141
+ for param in self.cond_stage_model.parameters():
142
+ param.requires_grad = False
143
+ else:
144
+ assert config != '__is_first_stage__'
145
+ assert config != '__is_unconditional__'
146
+ model = instantiate_from_config(config)
147
+ self.cond_stage_model = model
148
+
149
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
150
+ denoise_row = []
151
+ for zd in tqdm(samples, desc=desc):
152
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
153
+ force_not_quantize=force_no_decoder_quantization))
154
+ n_imgs_per_row = len(denoise_row)
155
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
156
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
157
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
158
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
159
+ return denoise_grid
160
+
161
+ def get_first_stage_encoding(self, encoder_posterior):# encode_emb from autoencoder
162
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
163
+ z = encoder_posterior.sample()
164
+ elif isinstance(encoder_posterior, torch.Tensor):
165
+ z = encoder_posterior
166
+ else:
167
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
168
+ return self.scale_factor * z
169
+
170
+ def get_learned_conditioning(self, c):
171
+ if self.cond_stage_forward is None:
172
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
173
+ c = self.cond_stage_model.encode(c)
174
+ if isinstance(c, DiagonalGaussianDistribution):
175
+ c = c.mode()
176
+ else:
177
+ c = self.cond_stage_model(c)
178
+ else:
179
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
180
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
181
+ return c
182
+
183
+ def meshgrid(self, h, w):
184
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
185
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
186
+
187
+ arr = torch.cat([y, x], dim=-1)
188
+ return arr
189
+
190
+ def delta_border(self, h, w):
191
+ """
192
+ :param h: height
193
+ :param w: width
194
+ :return: normalized distance to image border,
195
+ wtith min distance = 0 at border and max dist = 0.5 at image center
196
+ """
197
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
198
+ arr = self.meshgrid(h, w) / lower_right_corner
199
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
200
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
201
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
202
+ return edge_dist
203
+
204
+ def get_weighting(self, h, w, Ly, Lx, device):
205
+ weighting = self.delta_border(h, w)
206
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
207
+ self.split_input_params["clip_max_weight"], )
208
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
209
+
210
+ if self.split_input_params["tie_braker"]:
211
+ L_weighting = self.delta_border(Ly, Lx)
212
+ L_weighting = torch.clip(L_weighting,
213
+ self.split_input_params["clip_min_tie_weight"],
214
+ self.split_input_params["clip_max_tie_weight"])
215
+
216
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
217
+ weighting = weighting * L_weighting
218
+ return weighting
219
+
220
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
221
+ """
222
+ :param x: img of size (bs, c, h, w)
223
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
224
+ """
225
+ bs, nc, h, w = x.shape
226
+
227
+ # number of crops in image
228
+ Ly = (h - kernel_size[0]) // stride[0] + 1
229
+ Lx = (w - kernel_size[1]) // stride[1] + 1
230
+
231
+ if uf == 1 and df == 1:
232
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
233
+ unfold = torch.nn.Unfold(**fold_params)
234
+
235
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
236
+
237
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
238
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
239
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
240
+
241
+ elif uf > 1 and df == 1:
242
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
243
+ unfold = torch.nn.Unfold(**fold_params)
244
+
245
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
246
+ dilation=1, padding=0,
247
+ stride=(stride[0] * uf, stride[1] * uf))
248
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
249
+
250
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
251
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
252
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
253
+
254
+ elif df > 1 and uf == 1:
255
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
256
+ unfold = torch.nn.Unfold(**fold_params)
257
+
258
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
259
+ dilation=1, padding=0,
260
+ stride=(stride[0] // df, stride[1] // df))
261
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
262
+
263
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
264
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
265
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
266
+
267
+ else:
268
+ raise NotImplementedError
269
+
270
+ return fold, unfold, normalization, weighting
271
+
272
+ @torch.no_grad()
273
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
274
+ cond_key=None, return_original_cond=False, bs=None):
275
+ x = super().get_input(batch, k)
276
+ if bs is not None:
277
+ x = x[:bs]
278
+ x = x.to(self.device)
279
+ encoder_posterior = self.encode_first_stage(x)
280
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
281
+
282
+ if self.model.conditioning_key is not None:# 'crossattn' for txt2image, 'hybird' for txt_inpaint
283
+ if cond_key is None:
284
+ cond_key = self.cond_stage_key # 'caption' for txt_inpaint
285
+ if self.model.conditioning_key == 'hybrid':
286
+ xc = {}
287
+ assert cond_key == 'caption' # only txt_inpaint is implemented now
288
+ assert 'masked_image' in batch.keys()
289
+ assert 'mask' in batch.keys()
290
+ masked_image = super().get_input(batch,'masked_image')
291
+ mask = super().get_input(batch,'mask')
292
+ if bs is not None:
293
+ masked_image,mask = masked_image[:bs],mask[:bs]
294
+ masked_image,mask = masked_image.to(self.device),mask.to(self.device)
295
+ masked_image = self.get_first_stage_encoding(self.encode_first_stage(masked_image)).detach()
296
+ resized_mask = torch.nn.functional.interpolate(mask,size=masked_image.shape[-2:])
297
+ xc['c_concat'] = torch.cat((masked_image,resized_mask),dim = 1)
298
+ xc[cond_key] = batch[cond_key]
299
+ else:
300
+ if cond_key != self.first_stage_key:
301
+ if cond_key in ['caption', 'coordinates_bbox']:
302
+ xc = batch[cond_key]
303
+ elif cond_key == 'class_label':
304
+ xc = batch
305
+ else:
306
+ xc = super().get_input(batch, cond_key).to(self.device)
307
+ else:# cond_key == 'image'
308
+ xc = x
309
+ if not self.cond_stage_trainable or force_c_encode:# cond_stage_trainable is true for txt2img,force_c_encoder = True,when called in log_images
310
+ if isinstance(xc, list):
311
+ # import pudb; pudb.set_trace()
312
+ c = self.get_learned_conditioning(xc)# 因为log_images内接下来要调用sample_log,所以需要预先得到处理好的c
313
+ if isinstance(xc, dict):
314
+ c = {}
315
+ c['c_concat'] = xc['c_concat']
316
+ c['c_crossattn'] = self.get_learned_conditioning(xc[cond_key])
317
+ else:
318
+ c = self.get_learned_conditioning(xc.to(self.device))
319
+ else:
320
+ c = xc
321
+ if bs is not None:
322
+ if isinstance(c,dict):
323
+ for k in c.keys():
324
+ c[k] = c[k][:bs]
325
+ else:
326
+ c = c[:bs]
327
+
328
+ if self.use_positional_encodings:
329
+ pos_x, pos_y = self.compute_latent_shifts(batch)
330
+ ckey = __conditioning_keys__[self.model.conditioning_key]
331
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
332
+
333
+ else:
334
+ c = None
335
+ xc = None
336
+ if self.use_positional_encodings:
337
+ pos_x, pos_y = self.compute_latent_shifts(batch)
338
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
339
+ out = [z, c]
340
+ if return_first_stage_outputs:
341
+ xrec = self.decode_first_stage(z)
342
+ out.extend([x, xrec])
343
+ if return_original_cond:
344
+ out.append(xc)
345
+ return out
346
+
347
+ @torch.no_grad()
348
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
349
+ if predict_cids:
350
+ if z.dim() == 4:
351
+ z = torch.argmax(z.exp(), dim=1).long()
352
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
353
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
354
+
355
+ z = 1. / self.scale_factor * z
356
+
357
+ if hasattr(self, "split_input_params"):
358
+ if self.split_input_params["patch_distributed_vq"]:
359
+ ks = self.split_input_params["ks"] # eg. (128, 128)
360
+ stride = self.split_input_params["stride"] # eg. (64, 64)
361
+ uf = self.split_input_params["vqf"]
362
+ bs, nc, h, w = z.shape
363
+ if ks[0] > h or ks[1] > w:
364
+ ks = (min(ks[0], h), min(ks[1], w))
365
+ print("reducing Kernel")
366
+
367
+ if stride[0] > h or stride[1] > w:
368
+ stride = (min(stride[0], h), min(stride[1], w))
369
+ print("reducing stride")
370
+
371
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
372
+
373
+ z = unfold(z) # (bn, nc * prod(**ks), L)
374
+ # 1. Reshape to img shape
375
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
376
+
377
+ # 2. apply model loop over last dim
378
+ if isinstance(self.first_stage_model, VQModelInterface):
379
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
380
+ force_not_quantize=predict_cids or force_not_quantize)
381
+ for i in range(z.shape[-1])]
382
+ else:
383
+
384
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
385
+ for i in range(z.shape[-1])]
386
+
387
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
388
+ o = o * weighting
389
+ # Reverse 1. reshape to img shape
390
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
391
+ # stitch crops together
392
+ decoded = fold(o)
393
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
394
+ return decoded
395
+ else:
396
+ if isinstance(self.first_stage_model, VQModelInterface):
397
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
398
+ else:
399
+ return self.first_stage_model.decode(z)
400
+
401
+ else:
402
+ if isinstance(self.first_stage_model, VQModelInterface):
403
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
404
+ else:
405
+ return self.first_stage_model.decode(z)
406
+
407
+ # same as above but without decorator
408
+ def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
409
+ if predict_cids:
410
+ if z.dim() == 4:
411
+ z = torch.argmax(z.exp(), dim=1).long()
412
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
413
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
414
+
415
+ z = 1. / self.scale_factor * z
416
+
417
+ if hasattr(self, "split_input_params"):
418
+ if self.split_input_params["patch_distributed_vq"]:
419
+ ks = self.split_input_params["ks"] # eg. (128, 128)
420
+ stride = self.split_input_params["stride"] # eg. (64, 64)
421
+ uf = self.split_input_params["vqf"]
422
+ bs, nc, h, w = z.shape
423
+ if ks[0] > h or ks[1] > w:
424
+ ks = (min(ks[0], h), min(ks[1], w))
425
+ print("reducing Kernel")
426
+
427
+ if stride[0] > h or stride[1] > w:
428
+ stride = (min(stride[0], h), min(stride[1], w))
429
+ print("reducing stride")
430
+
431
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
432
+
433
+ z = unfold(z) # (bn, nc * prod(**ks), L)
434
+ # 1. Reshape to img shape
435
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
436
+
437
+ # 2. apply model loop over last dim
438
+ if isinstance(self.first_stage_model, VQModelInterface):
439
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
440
+ force_not_quantize=predict_cids or force_not_quantize)
441
+ for i in range(z.shape[-1])]
442
+ else:
443
+
444
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
445
+ for i in range(z.shape[-1])]
446
+
447
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
448
+ o = o * weighting
449
+ # Reverse 1. reshape to img shape
450
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
451
+ # stitch crops together
452
+ decoded = fold(o)
453
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
454
+ return decoded
455
+ else:
456
+ if isinstance(self.first_stage_model, VQModelInterface):
457
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
458
+ else:
459
+ return self.first_stage_model.decode(z)
460
+
461
+ else:
462
+ if isinstance(self.first_stage_model, VQModelInterface):
463
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
464
+ else:
465
+ return self.first_stage_model.decode(z)
466
+
467
+ @torch.no_grad()
468
+ def encode_first_stage(self, x):
469
+ if hasattr(self, "split_input_params"):
470
+ if self.split_input_params["patch_distributed_vq"]:
471
+ ks = self.split_input_params["ks"] # eg. (128, 128)
472
+ stride = self.split_input_params["stride"] # eg. (64, 64)
473
+ df = self.split_input_params["vqf"]
474
+ self.split_input_params['original_image_size'] = x.shape[-2:]
475
+ bs, nc, h, w = x.shape
476
+ if ks[0] > h or ks[1] > w:
477
+ ks = (min(ks[0], h), min(ks[1], w))
478
+ print("reducing Kernel")
479
+
480
+ if stride[0] > h or stride[1] > w:
481
+ stride = (min(stride[0], h), min(stride[1], w))
482
+ print("reducing stride")
483
+
484
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
485
+ z = unfold(x) # (bn, nc * prod(**ks), L)
486
+ # Reshape to img shape
487
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
488
+
489
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
490
+ for i in range(z.shape[-1])]
491
+
492
+ o = torch.stack(output_list, axis=-1)
493
+ o = o * weighting
494
+
495
+ # Reverse reshape to img shape
496
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
497
+ # stitch crops together
498
+ decoded = fold(o)
499
+ decoded = decoded / normalization
500
+ return decoded
501
+
502
+ else:
503
+ return self.first_stage_model.encode(x)
504
+ else:
505
+ return self.first_stage_model.encode(x)
506
+
507
+ def shared_step(self, batch, **kwargs):
508
+ x, c = self.get_input(batch, self.first_stage_key)# get latent and condition
509
+ loss = self(x, c)
510
+ return loss
511
+
512
+ def test_step(self,batch,batch_idx):
513
+ # TODO make self.test_repeat work
514
+ cond = {}
515
+ cond[self.cond_stage_key] = batch[self.cond_stage_key]
516
+ cond[self.cond_stage_key] = self.get_learned_conditioning(cond[self.cond_stage_key]) # c: string -> [B, T, Context_dim]
517
+ cond['c_crossattn'] = cond.pop(self.cond_stage_key)
518
+ masked_image = super().get_input(batch,'masked_image')
519
+ mask = super().get_input(batch,'mask')
520
+ masked_image,mask = masked_image.to(self.device),mask.to(self.device)
521
+ masked_image = self.get_first_stage_encoding(self.encode_first_stage(masked_image)).detach()
522
+ resized_mask = torch.nn.functional.interpolate(mask,size=masked_image.shape[-2:])
523
+ cond['c_concat'] = torch.cat((masked_image,resized_mask),dim = 1)
524
+ batch_size = len(batch[self.cond_stage_key])
525
+ # shape = [batch_size,self.channels,self.mel_dim,self.mel_length]
526
+ enc_emb = self.sample(cond,batch_size,timesteps=self.test_numsteps)
527
+ xrec = self.decode_first_stage(enc_emb)
528
+ reconstructions = (xrec + 1)/2 # to mel scale
529
+ test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
530
+ savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
531
+ if not os.path.exists(savedir):
532
+ os.makedirs(savedir)
533
+
534
+ file_names = batch['f_name']
535
+ nfiles = len(file_names)
536
+ reconstructions = reconstructions.cpu().numpy().squeeze(1) # squuze channel dim
537
+ for k in range(reconstructions.shape[0]):
538
+ b,repeat = k % nfiles, k // nfiles
539
+ vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
540
+ v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
541
+ save_img_path = os.path.join(savedir,f'{v_n}_sample_{num}_{repeat}.npy')# the num_th caption, the repeat_th repitition
542
+ np.save(save_img_path,reconstructions[b])
543
+
544
+ return None
545
+
546
+ def forward(self, x, c, *args, **kwargs):
547
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
548
+ if self.model.conditioning_key is not None:
549
+ assert c is not None
550
+ if self.cond_stage_trainable:
551
+ if isinstance(c,dict):
552
+ c[self.cond_stage_key] = self.get_learned_conditioning(c[self.cond_stage_key])
553
+ c['c_crossattn'] = c.pop(self.cond_stage_key)
554
+ else:
555
+ c = self.get_learned_conditioning(c) # c: string -> [B, T, Context_dim]
556
+ if self.shorten_cond_schedule: # TODO: drop this option
557
+ tc = self.cond_ids[t].to(self.device)
558
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
559
+ return self.p_losses(x, c, t, *args, **kwargs)
560
+
561
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
562
+ def rescale_bbox(bbox):
563
+ x0 = torch.clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
564
+ y0 = torch.clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
565
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
566
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
567
+ return x0, y0, w, h
568
+
569
+ return [rescale_bbox(b) for b in bboxes]
570
+
571
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
572
+ # make values to list to enable concat operation in
573
+ if isinstance(cond, dict):
574
+ # hybrid case, cond is exptected to be a dict. (txt2inpaint)
575
+ cond_tmp = {}# use cond_tmp to avoid inplace edit
576
+ for k,v in cond.items():
577
+ if not isinstance(v, list):
578
+ cond_tmp[k] = [cond[k]]
579
+ else:
580
+ cond_tmp[k] = cond[k]
581
+ cond = cond_tmp
582
+ else:
583
+ if not isinstance(cond, list):
584
+ cond = [cond]
585
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
586
+ cond = {key: cond}
587
+
588
+ if hasattr(self, "split_input_params"):
589
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
590
+ assert not return_ids
591
+ ks = self.split_input_params["ks"] # eg. (128, 128)
592
+ stride = self.split_input_params["stride"] # eg. (64, 64)
593
+
594
+ h, w = x_noisy.shape[-2:]
595
+
596
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
597
+
598
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
599
+ # Reshape to img shape
600
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
601
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
602
+
603
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
604
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
605
+ c_key = next(iter(cond.keys())) # get key
606
+ c = next(iter(cond.values())) # get value
607
+ assert (len(c) == 1) # todo extend to list with more than one elem
608
+ c = c[0] # get element
609
+
610
+ c = unfold(c)
611
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
612
+
613
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
614
+
615
+ elif self.cond_stage_key == 'coordinates_bbox':
616
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
617
+
618
+ # assuming padding of unfold is always 0 and its dilation is always 1
619
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
620
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
621
+ # as we are operating on latents, we need the factor from the original image size to the
622
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
623
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
624
+ rescale_latent = 2 ** (num_downs)
625
+
626
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
627
+ # need to rescale the tl patch coordinates to be in between (0,1)
628
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
629
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
630
+ for patch_nr in range(z.shape[-1])]
631
+
632
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
633
+ patch_limits = [(x_tl, y_tl,
634
+ rescale_latent * ks[0] / full_img_w,
635
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
636
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
637
+
638
+ # tokenize crop coordinates for the bounding boxes of the respective patches
639
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
640
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
641
+ print(patch_limits_tknzd[0].shape)
642
+ # cut tknzd crop position from conditioning
643
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
644
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
645
+ print(cut_cond.shape)
646
+
647
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
648
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
649
+ print(adapted_cond.shape)
650
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
651
+ print(adapted_cond.shape)
652
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
653
+ print(adapted_cond.shape)
654
+
655
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
656
+
657
+ else:
658
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
659
+
660
+ # apply model by loop over crops
661
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
662
+ assert not isinstance(output_list[0],
663
+ tuple) # todo cant deal with multiple model outputs check this never happens
664
+
665
+ o = torch.stack(output_list, axis=-1)
666
+ o = o * weighting
667
+ # Reverse reshape to img shape
668
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
669
+ # stitch crops together
670
+ x_recon = fold(o) / normalization
671
+
672
+ else:
673
+ # x_noisy is tensor with shape [b,c,mel_len,T]
674
+ # if condition is caption ,cond['c_crossattn'] is a list, each item shape is [1, 77, 1280]
675
+ x_recon = self.model(x_noisy, t, **cond)# tensor with shape [b,c,mel_len,T]
676
+
677
+ if isinstance(x_recon, tuple) and not return_ids:
678
+ return x_recon[0]
679
+ else:
680
+ return x_recon
681
+
682
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
683
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
684
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
685
+
686
+ def _prior_bpd(self, x_start):
687
+ """
688
+ Get the prior KL term for the variational lower-bound, measured in
689
+ bits-per-dim.
690
+ This term can't be optimized, as it only depends on the encoder.
691
+ :param x_start: the [N x C x ...] tensor of inputs.
692
+ :return: a batch of [N] KL values (in bits), one per batch element.
693
+ """
694
+ batch_size = x_start.shape[0]
695
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
696
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
697
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
698
+ return mean_flat(kl_prior) / np.log(2.0)
699
+
700
+ def p_losses(self, x_start, cond, t, noise=None):
701
+ noise = default(noise, lambda: torch.randn_like(x_start))
702
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
703
+ model_output = self.apply_model(x_noisy, t, cond)
704
+
705
+ loss_dict = {}
706
+ prefix = 'train' if self.training else 'val'
707
+
708
+ if self.parameterization == "x0":
709
+ target = x_start
710
+ elif self.parameterization == "eps":
711
+ target = noise
712
+ else:
713
+ raise NotImplementedError()
714
+
715
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
716
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
717
+
718
+ logvar_t = self.logvar[t].to(self.device)
719
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
720
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
721
+ if self.learn_logvar:
722
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
723
+ loss_dict.update({'logvar': self.logvar.data.mean()})
724
+
725
+ loss = self.l_simple_weight * loss.mean()
726
+
727
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
728
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
729
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
730
+ loss += (self.original_elbo_weight * loss_vlb)
731
+ loss_dict.update({f'{prefix}/loss': loss})
732
+
733
+ return loss, loss_dict
734
+
735
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
736
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
737
+ t_in = t
738
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
739
+
740
+ if score_corrector is not None:
741
+ assert self.parameterization == "eps"
742
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
743
+
744
+ if return_codebook_ids:
745
+ model_out, logits = model_out
746
+
747
+ if self.parameterization == "eps":
748
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
749
+ elif self.parameterization == "x0":
750
+ x_recon = model_out
751
+ else:
752
+ raise NotImplementedError()
753
+
754
+ if clip_denoised:
755
+ x_recon.clamp_(-1., 1.)
756
+ if quantize_denoised:
757
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
758
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
759
+ if return_codebook_ids:
760
+ return model_mean, posterior_variance, posterior_log_variance, logits
761
+ elif return_x0:
762
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
763
+ else:
764
+ return model_mean, posterior_variance, posterior_log_variance
765
+
766
+ @torch.no_grad()
767
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
768
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
769
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
770
+ b, *_, device = *x.shape, x.device
771
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
772
+ return_codebook_ids=return_codebook_ids,
773
+ quantize_denoised=quantize_denoised,
774
+ return_x0=return_x0,
775
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
776
+ if return_codebook_ids:
777
+ raise DeprecationWarning("Support dropped.")
778
+ model_mean, _, model_log_variance, logits = outputs
779
+ elif return_x0:
780
+ model_mean, _, model_log_variance, x0 = outputs
781
+ else:
782
+ model_mean, _, model_log_variance = outputs
783
+
784
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
785
+ if noise_dropout > 0.:
786
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
787
+ # no noise when t == 0
788
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
789
+
790
+ if return_codebook_ids:
791
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
792
+ if return_x0:
793
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
794
+ else:
795
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
796
+
797
+ @torch.no_grad()
798
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
799
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
800
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
801
+ log_every_t=None):
802
+ if not log_every_t:
803
+ log_every_t = self.log_every_t
804
+ timesteps = self.num_timesteps
805
+ if batch_size is not None:
806
+ b = batch_size if batch_size is not None else shape[0]
807
+ shape = [batch_size] + list(shape)
808
+ else:
809
+ b = batch_size = shape[0]
810
+ if x_T is None:
811
+ img = torch.randn(shape, device=self.device)
812
+ else:
813
+ img = x_T
814
+ intermediates = []
815
+ if cond is not None:
816
+ if isinstance(cond, dict):
817
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
818
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
819
+ else:
820
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
821
+
822
+ if start_T is not None:
823
+ timesteps = min(timesteps, start_T)
824
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
825
+ total=timesteps) if verbose else reversed(
826
+ range(0, timesteps))
827
+ if type(temperature) == float:
828
+ temperature = [temperature] * timesteps
829
+
830
+ for i in iterator:
831
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
832
+ if self.shorten_cond_schedule:
833
+ assert self.model.conditioning_key != 'hybrid'
834
+ tc = self.cond_ids[ts].to(cond.device)
835
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
836
+
837
+ img, x0_partial = self.p_sample(img, cond, ts,
838
+ clip_denoised=self.clip_denoised,
839
+ quantize_denoised=quantize_denoised, return_x0=True,
840
+ temperature=temperature[i], noise_dropout=noise_dropout,
841
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
842
+ if mask is not None:
843
+ assert x0 is not None
844
+ img_orig = self.q_sample(x0, ts)
845
+ img = img_orig * mask + (1. - mask) * img
846
+
847
+ if i % log_every_t == 0 or i == timesteps - 1:
848
+ intermediates.append(x0_partial)
849
+ if callback: callback(i)
850
+ if img_callback: img_callback(img, i)
851
+ return img, intermediates
852
+
853
+ @torch.no_grad()
854
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
855
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
856
+ mask=None, x0=None, img_callback=None, start_T=None,
857
+ log_every_t=None):
858
+
859
+ if not log_every_t:
860
+ log_every_t = self.log_every_t
861
+ device = self.betas.device
862
+ b = shape[0]
863
+ if x_T is None:
864
+ img = torch.randn(shape, device=device)
865
+ else:
866
+ img = x_T
867
+
868
+ intermediates = [img]
869
+ if timesteps is None:
870
+ timesteps = self.num_timesteps
871
+
872
+ if start_T is not None:
873
+ timesteps = min(timesteps, start_T)
874
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
875
+ range(0, timesteps))
876
+
877
+ if mask is not None:
878
+ assert x0 is not None
879
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
880
+
881
+ for i in iterator:
882
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
883
+ if self.shorten_cond_schedule:
884
+ assert self.model.conditioning_key != 'hybrid'
885
+ tc = self.cond_ids[ts].to(cond.device)
886
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
887
+
888
+ img = self.p_sample(img, cond, ts,
889
+ clip_denoised=self.clip_denoised,
890
+ quantize_denoised=quantize_denoised)
891
+ if mask is not None:
892
+ img_orig = self.q_sample(x0, ts)
893
+ img = img_orig * mask + (1. - mask) * img
894
+
895
+ if i % log_every_t == 0 or i == timesteps - 1:
896
+ intermediates.append(img)
897
+ if callback: callback(i)
898
+ if img_callback: img_callback(img, i)
899
+
900
+ if return_intermediates:
901
+ return img, intermediates
902
+ return img
903
+
904
+ @torch.no_grad()
905
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
906
+ verbose=True, timesteps=None, quantize_denoised=False,
907
+ mask=None, x0=None, shape=None,**kwargs):
908
+ if shape is None:
909
+ shape = (batch_size, self.channels, self.mel_dim, self.mel_length)
910
+ if cond is not None:
911
+ if isinstance(cond, dict):
912
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
913
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
914
+ else:
915
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
916
+ return self.p_sample_loop(cond,
917
+ shape,
918
+ return_intermediates=return_intermediates, x_T=x_T,
919
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
920
+ mask=mask, x0=x0)
921
+
922
+ @torch.no_grad()
923
+ def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
924
+ if ddim:
925
+ ddim_sampler = DDIMSampler(self)
926
+ shape = (self.channels, self.mel_dim, self.mel_length)
927
+ samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
928
+ shape,cond,verbose=False,**kwargs)
929
+
930
+ else:
931
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
932
+ return_intermediates=True,**kwargs)
933
+
934
+ return samples, intermediates
935
+
936
+ @torch.no_grad()
937
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
938
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
939
+ plot_diffusion_rows=True, **kwargs):
940
+
941
+ use_ddim = ddim_steps is not None
942
+
943
+ log = dict()
944
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
945
+ return_first_stage_outputs=True,
946
+ force_c_encode=True,
947
+ return_original_cond=True,
948
+ bs=N)
949
+
950
+ N = min(x.shape[0], N)
951
+ n_row = min(x.shape[0], n_row)
952
+ log["inputs"] = x # 原始输入图像
953
+ log["reconstruction"] = xrec # 重建得到的图像
954
+ if self.model.conditioning_key is not None:
955
+ if hasattr(self.cond_stage_model, "decode"):# when cond_stage is first_stage. (bert embedder doesnot have decode)
956
+ xc = self.cond_stage_model.decode(c)# decoded masked image
957
+ log["conditioning"] = xc # 重建后的图像
958
+ elif self.cond_stage_key in ["caption"]:
959
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
960
+ log["conditioning"] = xc # 含有文本的图像
961
+ if self.model.conditioning_key == 'hybrid':
962
+ log["decoded_maskedimg"] = self.first_stage_model.decode(c['c_concat'][:,:self.first_stage_model.embed_dim])# c_concat is the concat result of masked_img latent and resized mask. get latent here to decode
963
+ elif self.cond_stage_key == 'class_label':
964
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
965
+ log['conditioning'] = xc # 文本为类标签的图像
966
+ elif isimage(xc):
967
+ log["conditioning"] = xc
968
+ if ismap(xc):
969
+ log["original_conditioning"] = self.to_rgb(xc)
970
+
971
+ if plot_diffusion_rows:# diffusion每一步的图像
972
+ # get diffusion row
973
+ diffusion_row = list()
974
+ z_start = z[:n_row]
975
+ for t in range(self.num_timesteps):
976
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
977
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
978
+ t = t.to(self.device).long()
979
+ noise = torch.randn_like(z_start)
980
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
981
+ diffusion_row.append(self.decode_first_stage(z_noisy))
982
+
983
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
984
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
985
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
986
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
987
+ log["diffusion_row"] = diffusion_grid
988
+
989
+ if sample:#
990
+ # get denoise row
991
+ with self.ema_scope("Plotting"):
992
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
993
+ ddim_steps=ddim_steps,eta=ddim_eta)
994
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
995
+ x_samples = self.decode_first_stage(samples)
996
+ log["samples"] = x_samples
997
+ if plot_denoise_rows:
998
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
999
+ log["denoise_row"] = denoise_grid
1000
+
1001
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1002
+ self.first_stage_model, IdentityFirstStage):
1003
+ # also display when quantizing x0 while sampling
1004
+ with self.ema_scope("Plotting Quantized Denoised"):
1005
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1006
+ ddim_steps=ddim_steps,eta=ddim_eta,
1007
+ quantize_denoised=True)
1008
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1009
+ # quantize_denoised=True)
1010
+ x_samples = self.decode_first_stage(samples.to(self.device))
1011
+ log["samples_x0_quantized"] = x_samples
1012
+
1013
+ if inpaint:
1014
+ # make a simple center square
1015
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1016
+ mask = torch.ones(N, h, w).to(self.device)
1017
+ # zeros will be filled in
1018
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1019
+ mask = mask[:, None, ...]# N,1,H,W
1020
+ with self.ema_scope("Plotting Inpaint"):
1021
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
1022
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1023
+ x_samples = self.decode_first_stage(samples.to(self.device))
1024
+ log["samples_inpainting"] = x_samples
1025
+ log["mask"] = mask
1026
+
1027
+ # outpaint
1028
+ with self.ema_scope("Plotting Outpaint"):
1029
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
1030
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1031
+ x_samples = self.decode_first_stage(samples.to(self.device))
1032
+ log["samples_outpainting"] = x_samples
1033
+
1034
+ if plot_progressive_rows:
1035
+ with self.ema_scope("Plotting Progressives"):
1036
+ img, progressives = self.progressive_denoising(c,
1037
+ shape=(self.channels, self.mel_dim, self.mel_length),
1038
+ batch_size=N)
1039
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1040
+ log["progressive_row"] = prog_row
1041
+
1042
+ if return_keys:
1043
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1044
+ return log
1045
+ else:
1046
+ return {key: log[key] for key in return_keys}
1047
+ return log
1048
+
1049
+ def configure_optimizers(self):
1050
+ lr = self.learning_rate
1051
+ params = list(self.model.parameters())
1052
+ if self.cond_stage_trainable:
1053
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1054
+ params = params + list(self.cond_stage_model.parameters())
1055
+ if self.learn_logvar:
1056
+ print('Diffusion model optimizing logvar')
1057
+ params.append(self.logvar)
1058
+ opt = torch.optim.AdamW(params, lr=lr)
1059
+ if self.use_scheduler:
1060
+ assert 'target' in self.scheduler_config
1061
+ scheduler = instantiate_from_config(self.scheduler_config)
1062
+
1063
+ print("Setting up LambdaLR scheduler...")
1064
+ scheduler = [
1065
+ {
1066
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1067
+ 'interval': 'step',
1068
+ 'frequency': 1
1069
+ }]
1070
+ return [opt], scheduler
1071
+ return opt
1072
+
1073
+ @torch.no_grad()
1074
+ def to_rgb(self, x):
1075
+ x = x.float()
1076
+ if not hasattr(self, "colorize"):
1077
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1078
+ x = nn.functional.conv2d(x, weight=self.colorize)
1079
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1080
+ return x
1081
+
ldm/models/diffusion/plms.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+
8
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
+
10
+
11
+ class PLMSSampler(object):
12
+ def __init__(self, model, schedule="linear", **kwargs):
13
+ super().__init__()
14
+ self.model = model
15
+ self.ddpm_num_timesteps = model.num_timesteps
16
+ self.schedule = schedule
17
+
18
+ def register_buffer(self, name, attr):
19
+ if type(attr) == torch.Tensor:
20
+ if attr.device != torch.device("cuda"):
21
+ attr = attr.to(torch.device("cuda"))
22
+ setattr(self, name, attr)
23
+
24
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
25
+ if ddim_eta != 0:
26
+ raise ValueError('ddim_eta must be 0 for PLMS')
27
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
28
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
29
+ alphas_cumprod = self.model.alphas_cumprod
30
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
31
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
32
+
33
+ self.register_buffer('betas', to_torch(self.model.betas))
34
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
35
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
36
+
37
+ # calculations for diffusion q(x_t | x_{t-1}) and others
38
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
39
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
40
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
41
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
42
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
43
+
44
+ # ddim sampling parameters
45
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
46
+ ddim_timesteps=self.ddim_timesteps,
47
+ eta=ddim_eta,verbose=verbose)
48
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
49
+ self.register_buffer('ddim_alphas', ddim_alphas)
50
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
51
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
52
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
53
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
54
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
55
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
56
+
57
+ @torch.no_grad()
58
+ def sample(self,
59
+ S,
60
+ batch_size,
61
+ shape,
62
+ conditioning=None,
63
+ callback=None,
64
+ normals_sequence=None,
65
+ img_callback=None,
66
+ quantize_x0=False,
67
+ eta=0.,
68
+ mask=None,
69
+ x0=None,
70
+ temperature=1.,
71
+ noise_dropout=0.,
72
+ score_corrector=None,
73
+ corrector_kwargs=None,
74
+ verbose=True,
75
+ x_T=None,
76
+ log_every_t=100,
77
+ unconditional_guidance_scale=1.,
78
+ unconditional_conditioning=None,
79
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
80
+ **kwargs
81
+ ):
82
+ if conditioning is not None:
83
+ if isinstance(conditioning, dict):
84
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
85
+ if cbs != batch_size:
86
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
87
+ else:
88
+ if conditioning.shape[0] != batch_size:
89
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
90
+
91
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
92
+ # sampling
93
+ C, H, W = shape
94
+ size = (batch_size, C, H, W)
95
+ print(f'Data shape for PLMS sampling is {size}')
96
+
97
+ samples, intermediates = self.plms_sampling(conditioning, size,
98
+ callback=callback,
99
+ img_callback=img_callback,
100
+ quantize_denoised=quantize_x0,
101
+ mask=mask, x0=x0,
102
+ ddim_use_original_steps=False,
103
+ noise_dropout=noise_dropout,
104
+ temperature=temperature,
105
+ score_corrector=score_corrector,
106
+ corrector_kwargs=corrector_kwargs,
107
+ x_T=x_T,
108
+ log_every_t=log_every_t,
109
+ unconditional_guidance_scale=unconditional_guidance_scale,
110
+ unconditional_conditioning=unconditional_conditioning,
111
+ )
112
+ return samples, intermediates
113
+
114
+ @torch.no_grad()
115
+ def plms_sampling(self, cond, shape,
116
+ x_T=None, ddim_use_original_steps=False,
117
+ callback=None, timesteps=None, quantize_denoised=False,
118
+ mask=None, x0=None, img_callback=None, log_every_t=100,
119
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
120
+ unconditional_guidance_scale=1., unconditional_conditioning=None,):
121
+ device = self.model.betas.device
122
+ b = shape[0]
123
+ if x_T is None:
124
+ img = torch.randn(shape, device=device)
125
+ else:
126
+ img = x_T
127
+
128
+ if timesteps is None:
129
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
130
+ elif timesteps is not None and not ddim_use_original_steps:
131
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
132
+ timesteps = self.ddim_timesteps[:subset_end]
133
+
134
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
135
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
136
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
137
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
138
+
139
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
140
+ old_eps = []
141
+
142
+ for i, step in enumerate(iterator):
143
+ index = total_steps - i - 1
144
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
145
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
146
+
147
+ if mask is not None:
148
+ assert x0 is not None
149
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
150
+ img = img_orig * mask + (1. - mask) * img
151
+
152
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
153
+ quantize_denoised=quantize_denoised, temperature=temperature,
154
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
155
+ corrector_kwargs=corrector_kwargs,
156
+ unconditional_guidance_scale=unconditional_guidance_scale,
157
+ unconditional_conditioning=unconditional_conditioning,
158
+ old_eps=old_eps, t_next=ts_next)
159
+ img, pred_x0, e_t = outs
160
+ old_eps.append(e_t)
161
+ if len(old_eps) >= 4:
162
+ old_eps.pop(0)
163
+ if callback: callback(i)
164
+ if img_callback: img_callback(pred_x0, i)
165
+
166
+ if index % log_every_t == 0 or index == total_steps - 1:
167
+ intermediates['x_inter'].append(img)
168
+ intermediates['pred_x0'].append(pred_x0)
169
+
170
+ return img, intermediates
171
+
172
+ @torch.no_grad()
173
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
174
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
175
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
176
+ b, *_, device = *x.shape, x.device
177
+
178
+ def get_model_output(x, t):
179
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
180
+ e_t = self.model.apply_model(x, t, c)
181
+ else:
182
+ x_in = torch.cat([x] * 2)
183
+ t_in = torch.cat([t] * 2)
184
+ c_in = torch.cat([unconditional_conditioning, c])
185
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
186
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
187
+
188
+ if score_corrector is not None:
189
+ assert self.model.parameterization == "eps"
190
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
191
+
192
+ return e_t
193
+
194
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
195
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
196
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
197
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
198
+
199
+ def get_x_prev_and_pred_x0(e_t, index):
200
+ # select parameters corresponding to the currently considered timestep
201
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
202
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
203
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
204
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
205
+
206
+ # current prediction for x_0
207
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
208
+ if quantize_denoised:
209
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
210
+ # direction pointing to x_t
211
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
212
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
213
+ if noise_dropout > 0.:
214
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
215
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
216
+ return x_prev, pred_x0
217
+
218
+ e_t = get_model_output(x, t)
219
+ if len(old_eps) == 0:
220
+ # Pseudo Improved Euler (2nd order)
221
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
222
+ e_t_next = get_model_output(x_prev, t_next)
223
+ e_t_prime = (e_t + e_t_next) / 2
224
+ elif len(old_eps) == 1:
225
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
226
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
227
+ elif len(old_eps) == 2:
228
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
229
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
230
+ elif len(old_eps) >= 3:
231
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
232
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
233
+
234
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
235
+
236
+ return x_prev, pred_x0, e_t
ldm/modules/__pycache__/attention.cpython-38.pyc ADDED
Binary file (8.79 kB). View file
 
ldm/modules/__pycache__/attention.cpython-39.pyc ADDED
Binary file (8.76 kB). View file
 
ldm/modules/__pycache__/ema.cpython-38.pyc ADDED
Binary file (3 kB). View file
 
ldm/modules/__pycache__/ema.cpython-39.pyc ADDED
Binary file (2.97 kB). View file
 
ldm/modules/__pycache__/x_transformer.cpython-39.pyc ADDED
Binary file (18.3 kB). View file
 
ldm/modules/attention.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+
8
+ from ldm.modules.diffusionmodules.util import checkpoint
9
+
10
+
11
+ def exists(val):
12
+ return val is not None
13
+
14
+
15
+ def uniq(arr):
16
+ return{el: True for el in arr}.keys()
17
+
18
+
19
+ def default(val, d):
20
+ if exists(val):
21
+ return val
22
+ return d() if isfunction(d) else d
23
+
24
+
25
+ def max_neg_value(t):
26
+ return -torch.finfo(t.dtype).max
27
+
28
+
29
+ def init_(tensor):
30
+ dim = tensor.shape[-1]
31
+ std = 1 / math.sqrt(dim)
32
+ tensor.uniform_(-std, std)
33
+ return tensor
34
+
35
+
36
+ # feedforward
37
+ class GEGLU(nn.Module):
38
+ def __init__(self, dim_in, dim_out):
39
+ super().__init__()
40
+ self.proj = nn.Linear(dim_in, dim_out * 2)
41
+
42
+ def forward(self, x):
43
+ x, gate = self.proj(x).chunk(2, dim=-1)
44
+ return x * F.gelu(gate)
45
+
46
+
47
+ class FeedForward(nn.Module):
48
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
49
+ super().__init__()
50
+ inner_dim = int(dim * mult)
51
+ dim_out = default(dim_out, dim)
52
+ project_in = nn.Sequential(
53
+ nn.Linear(dim, inner_dim),
54
+ nn.GELU()
55
+ ) if not glu else GEGLU(dim, inner_dim)
56
+
57
+ self.net = nn.Sequential(
58
+ project_in,
59
+ nn.Dropout(dropout),
60
+ nn.Linear(inner_dim, dim_out)
61
+ )
62
+
63
+ def forward(self, x):
64
+ return self.net(x)
65
+
66
+
67
+ def zero_module(module):
68
+ """
69
+ Zero out the parameters of a module and return it.
70
+ """
71
+ for p in module.parameters():
72
+ p.detach().zero_()
73
+ return module
74
+
75
+
76
+ def Normalize(in_channels):
77
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
78
+
79
+
80
+ class LinearAttention(nn.Module):
81
+ def __init__(self, dim, heads=4, dim_head=32):
82
+ super().__init__()
83
+ self.heads = heads
84
+ hidden_dim = dim_head * heads
85
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
86
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
87
+
88
+ def forward(self, x):
89
+ b, c, h, w = x.shape
90
+ qkv = self.to_qkv(x)
91
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
92
+ k = k.softmax(dim=-1)
93
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
94
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
95
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
96
+ return self.to_out(out)
97
+
98
+
99
+ class SpatialSelfAttention(nn.Module):
100
+ def __init__(self, in_channels):
101
+ super().__init__()
102
+ self.in_channels = in_channels
103
+
104
+ self.norm = Normalize(in_channels)
105
+ self.q = torch.nn.Conv2d(in_channels,
106
+ in_channels,
107
+ kernel_size=1,
108
+ stride=1,
109
+ padding=0)
110
+ self.k = torch.nn.Conv2d(in_channels,
111
+ in_channels,
112
+ kernel_size=1,
113
+ stride=1,
114
+ padding=0)
115
+ self.v = torch.nn.Conv2d(in_channels,
116
+ in_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+ self.proj_out = torch.nn.Conv2d(in_channels,
121
+ in_channels,
122
+ kernel_size=1,
123
+ stride=1,
124
+ padding=0)
125
+
126
+ def forward(self, x):
127
+ h_ = x
128
+ h_ = self.norm(h_)
129
+ q = self.q(h_)
130
+ k = self.k(h_)
131
+ v = self.v(h_)
132
+
133
+ # compute attention
134
+ b,c,h,w = q.shape
135
+ q = rearrange(q, 'b c h w -> b (h w) c')
136
+ k = rearrange(k, 'b c h w -> b c (h w)')
137
+ w_ = torch.einsum('bij,bjk->bik', q, k)
138
+
139
+ w_ = w_ * (int(c)**(-0.5))
140
+ w_ = torch.nn.functional.softmax(w_, dim=2)
141
+
142
+ # attend to values
143
+ v = rearrange(v, 'b c h w -> b c (h w)')
144
+ w_ = rearrange(w_, 'b i j -> b j i')
145
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
146
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
147
+ h_ = self.proj_out(h_)
148
+
149
+ return x+h_
150
+
151
+
152
+ class CrossAttention(nn.Module):
153
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):# 如果设置了context_dim就不是自注意力了
154
+ super().__init__()
155
+ inner_dim = dim_head * heads # inner_dim == SpatialTransformer.model_channels
156
+ context_dim = default(context_dim, query_dim)
157
+
158
+ self.scale = dim_head ** -0.5
159
+ self.heads = heads
160
+
161
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
162
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
163
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
164
+
165
+ self.to_out = nn.Sequential(
166
+ nn.Linear(inner_dim, query_dim),
167
+ nn.Dropout(dropout)
168
+ )
169
+
170
+ def forward(self, x, context=None, mask=None):# x:(b,h*w,c), context:(b,seq_len,context_dim)
171
+ h = self.heads
172
+
173
+ q = self.to_q(x)# q:(b,h*w,inner_dim)
174
+ context = default(context, x)
175
+ k = self.to_k(context)# (b,seq_len,inner_dim)
176
+ v = self.to_v(context)# (b,seq_len,inner_dim)
177
+
178
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))# n is seq_len for k and v
179
+
180
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale # (b*head,h*w,seq_len)
181
+
182
+ if exists(mask):# false
183
+ mask = rearrange(mask, 'b ... -> b (...)')
184
+ max_neg_value = -torch.finfo(sim.dtype).max
185
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
186
+ sim.masked_fill_(~mask, max_neg_value)
187
+
188
+ # attention, what we cannot get enough of
189
+ attn = sim.softmax(dim=-1)
190
+
191
+ out = einsum('b i j, b j d -> b i d', attn, v)# (b*head,h*w,inner_dim/head)
192
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)# (b,h*w,inner_dim)
193
+ return self.to_out(out)
194
+
195
+
196
+ class BasicTransformerBlock(nn.Module):
197
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
198
+ super().__init__()
199
+ self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
200
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
201
+ self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
202
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
203
+ self.norm1 = nn.LayerNorm(dim)
204
+ self.norm2 = nn.LayerNorm(dim)
205
+ self.norm3 = nn.LayerNorm(dim)
206
+ self.checkpoint = checkpoint
207
+
208
+ def forward(self, x, context=None):
209
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
210
+
211
+ def _forward(self, x, context=None):
212
+ x = self.attn1(self.norm1(x)) + x
213
+ x = self.attn2(self.norm2(x), context=context) + x
214
+ x = self.ff(self.norm3(x)) + x
215
+ return x
216
+
217
+
218
+ class SpatialTransformer(nn.Module):
219
+ """
220
+ Transformer block for image-like data.
221
+ First, project the input (aka embedding)
222
+ and reshape to b, t, d.
223
+ Then apply standard transformer action.
224
+ Finally, reshape to image
225
+ """
226
+ def __init__(self, in_channels, n_heads, d_head,
227
+ depth=1, dropout=0., context_dim=None):
228
+ super().__init__()
229
+ self.in_channels = in_channels
230
+ inner_dim = n_heads * d_head
231
+ self.norm = Normalize(in_channels)
232
+
233
+ self.proj_in = nn.Conv2d(in_channels,
234
+ inner_dim,
235
+ kernel_size=1,
236
+ stride=1,
237
+ padding=0)
238
+
239
+ self.transformer_blocks = nn.ModuleList(
240
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
241
+ for d in range(depth)]
242
+ )
243
+
244
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
245
+ in_channels,
246
+ kernel_size=1,
247
+ stride=1,
248
+ padding=0))
249
+
250
+ def forward(self, x, context=None):
251
+ # note: if no context is given, cross-attention defaults to self-attention
252
+ b, c, h, w = x.shape # such as [2,320,10,106]
253
+ x_in = x
254
+ x = self.norm(x)# group norm
255
+ x = self.proj_in(x)# no shape change
256
+ x = rearrange(x, 'b c h w -> b (h w) c')
257
+ for block in self.transformer_blocks:
258
+ x = block(x, context=context)# context shape [b,seq_len=77,context_dim]
259
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
260
+ x = self.proj_out(x)
261
+ return x + x_in
ldm/modules/diffusionmodules/__init__.py ADDED
File without changes
ldm/modules/diffusionmodules/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (181 Bytes). View file
 
ldm/modules/diffusionmodules/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (160 Bytes). View file
 
ldm/modules/diffusionmodules/__pycache__/custom_openaimodel.cpython-38.pyc ADDED
Binary file (8.04 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/model.cpython-38.pyc ADDED
Binary file (20.7 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/model.cpython-39.pyc ADDED
Binary file (20.6 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-38.pyc ADDED
Binary file (22.8 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-39.pyc ADDED
Binary file (22.7 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/util.cpython-38.pyc ADDED
Binary file (9.46 kB). View file
 
ldm/modules/diffusionmodules/__pycache__/util.cpython-39.pyc ADDED
Binary file (9.51 kB). View file
 
ldm/modules/diffusionmodules/custom_openaimodel.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from functools import partial
3
+ import math
4
+ from typing import Iterable
5
+
6
+ import numpy as np
7
+ import torch as th
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from ldm.modules.diffusionmodules.util import (
12
+ checkpoint,
13
+ conv_nd,
14
+ linear,
15
+ avg_pool_nd,
16
+ zero_module,
17
+ normalization,
18
+ timestep_embedding,
19
+ )
20
+ from ldm.modules.attention import SpatialTransformer
21
+ from ldm.modules.diffusionmodules.openaimodel import convert_module_to_f16, convert_module_to_f32, AttentionPool2d, \
22
+ TimestepBlock, TimestepEmbedSequential, Upsample, TransposedUpsample, Downsample, ResBlock, AttentionBlock, count_flops_attn, \
23
+ QKVAttentionLegacy, QKVAttention
24
+
25
+
26
+ class UNetModel(nn.Module):
27
+ """
28
+ The full UNet model with attention and timestep embedding.
29
+ :param in_channels: channels in the input Tensor.
30
+ :param model_channels: base channel count for the model.
31
+ :param out_channels: channels in the output Tensor.
32
+ :param num_res_blocks: number of residual blocks per downsample.
33
+ :param attention_resolutions: a collection of downsample rates at which
34
+ attention will take place. May be a set, list, or tuple.
35
+ For example, if this contains 4, then at 4x downsampling, attention
36
+ will be used.
37
+ :param dropout: the dropout probability.
38
+ :param channel_mult: channel multiplier for each level of the UNet.
39
+ :param conv_resample: if True, use learned convolutions for upsampling and
40
+ downsampling.
41
+ :param dims: determines if the signal is 1D, 2D, or 3D.
42
+ :param num_classes: if specified (as an int), then this model will be
43
+ class-conditional with `num_classes` classes.
44
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
45
+ :param num_heads: the number of attention heads in each attention layer.
46
+ :param num_heads_channels: if specified, ignore num_heads and instead use
47
+ a fixed channel width per attention head.
48
+ :param num_heads_upsample: works with num_heads to set a different number
49
+ of heads for upsampling. Deprecated.
50
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
51
+ :param resblock_updown: use residual blocks for up/downsampling.
52
+ :param use_new_attention_order: use a different attention pattern for potentially
53
+ increased efficiency.
54
+ """
55
+
56
+ def __init__(
57
+ self,
58
+ image_size,
59
+ in_channels,
60
+ model_channels,
61
+ out_channels,
62
+ num_res_blocks,
63
+ attention_resolutions,
64
+ dropout=0,
65
+ channel_mult=(1, 2, 4, 8),
66
+ conv_resample=True,
67
+ dims=2,
68
+ num_classes=None,
69
+ use_checkpoint=False,
70
+ use_fp16=False,
71
+ num_heads=-1,
72
+ num_head_channels=-1,
73
+ num_heads_upsample=-1,
74
+ use_scale_shift_norm=False,
75
+ resblock_updown=False,
76
+ use_new_attention_order=False,
77
+ use_spatial_transformer=False, # custom transformer support
78
+ transformer_depth=1, # custom transformer support
79
+ context_dim=None, # custom transformer support
80
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
81
+ legacy=True,
82
+ use_context_project=False, # custom text to audio support
83
+ use_context_attn=True # custom text to audio support
84
+ ):
85
+ super().__init__()
86
+ if use_spatial_transformer:
87
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
88
+
89
+ if context_dim is not None and not use_context_project:
90
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
91
+ from omegaconf.listconfig import ListConfig
92
+ if type(context_dim) == ListConfig:
93
+ context_dim = list(context_dim)
94
+
95
+ if num_heads_upsample == -1:
96
+ num_heads_upsample = num_heads
97
+
98
+ if num_heads == -1:
99
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
100
+
101
+ if num_head_channels == -1:
102
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
103
+
104
+ self.image_size = image_size
105
+ self.in_channels = in_channels
106
+ self.model_channels = model_channels
107
+ self.out_channels = out_channels
108
+ self.num_res_blocks = num_res_blocks
109
+ self.attention_resolutions = attention_resolutions
110
+ self.dropout = dropout
111
+ self.channel_mult = channel_mult
112
+ self.conv_resample = conv_resample
113
+ self.num_classes = num_classes
114
+ self.use_checkpoint = use_checkpoint
115
+ self.dtype = th.float16 if use_fp16 else th.float32
116
+ self.num_heads = num_heads
117
+ self.num_head_channels = num_head_channels
118
+ self.num_heads_upsample = num_heads_upsample
119
+ self.predict_codebook_ids = n_embed is not None
120
+
121
+ time_embed_dim = model_channels * 4
122
+ self.time_embed = nn.Sequential(
123
+ linear(model_channels, time_embed_dim),
124
+ nn.SiLU(),
125
+ linear(time_embed_dim, time_embed_dim),
126
+ )
127
+
128
+ if self.num_classes is not None:
129
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
130
+
131
+ self.input_blocks = nn.ModuleList(
132
+ [
133
+ TimestepEmbedSequential(
134
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
135
+ )
136
+ ]
137
+ )
138
+ self._feature_size = model_channels
139
+ input_block_chans = [model_channels]
140
+ ch = model_channels
141
+ ds = 1
142
+ for level, mult in enumerate(channel_mult):
143
+ for _ in range(num_res_blocks):
144
+ layers = [
145
+ ResBlock(
146
+ ch,
147
+ time_embed_dim,
148
+ dropout,
149
+ out_channels=mult * model_channels,
150
+ dims=dims,
151
+ use_checkpoint=use_checkpoint,
152
+ use_scale_shift_norm=use_scale_shift_norm,
153
+ )
154
+ ]
155
+ ch = mult * model_channels
156
+ if ds in attention_resolutions:
157
+ if num_head_channels == -1:
158
+ dim_head = ch // num_heads
159
+ else:
160
+ num_heads = ch // num_head_channels
161
+ dim_head = num_head_channels
162
+ if legacy:
163
+ #num_heads = 1
164
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
165
+ layers.append(
166
+ AttentionBlock(
167
+ ch,
168
+ use_checkpoint=use_checkpoint,
169
+ num_heads=num_heads,
170
+ num_head_channels=dim_head,
171
+ use_new_attention_order=use_new_attention_order,
172
+ ) if not use_spatial_transformer else SpatialTransformer(
173
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
174
+ )
175
+ )
176
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
177
+ self._feature_size += ch
178
+ input_block_chans.append(ch)
179
+ if level != len(channel_mult) - 1:
180
+ out_ch = ch
181
+ self.input_blocks.append(
182
+ TimestepEmbedSequential(
183
+ ResBlock(
184
+ ch,
185
+ time_embed_dim,
186
+ dropout,
187
+ out_channels=out_ch,
188
+ dims=dims,
189
+ use_checkpoint=use_checkpoint,
190
+ use_scale_shift_norm=use_scale_shift_norm,
191
+ down=True,
192
+ )
193
+ if resblock_updown
194
+ else Downsample(
195
+ ch, conv_resample, dims=dims, out_channels=out_ch
196
+ )
197
+ )
198
+ )
199
+ ch = out_ch
200
+ input_block_chans.append(ch)
201
+ ds *= 2
202
+ self._feature_size += ch
203
+
204
+ if num_head_channels == -1:
205
+ dim_head = ch // num_heads
206
+ else:
207
+ num_heads = ch // num_head_channels
208
+ dim_head = num_head_channels
209
+ if legacy:
210
+ #num_heads = 1
211
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
212
+ self.middle_block = TimestepEmbedSequential(
213
+ ResBlock(
214
+ ch,
215
+ time_embed_dim,
216
+ dropout,
217
+ dims=dims,
218
+ use_checkpoint=use_checkpoint,
219
+ use_scale_shift_norm=use_scale_shift_norm,
220
+ ),
221
+ AttentionBlock(
222
+ ch,
223
+ use_checkpoint=use_checkpoint,
224
+ num_heads=num_heads,
225
+ num_head_channels=dim_head,
226
+ use_new_attention_order=use_new_attention_order,
227
+ ) if not use_spatial_transformer else SpatialTransformer(
228
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
229
+ ),
230
+ ResBlock(
231
+ ch,
232
+ time_embed_dim,
233
+ dropout,
234
+ dims=dims,
235
+ use_checkpoint=use_checkpoint,
236
+ use_scale_shift_norm=use_scale_shift_norm,
237
+ ),
238
+ )
239
+ self._feature_size += ch
240
+
241
+ self.output_blocks = nn.ModuleList([])
242
+ for level, mult in list(enumerate(channel_mult))[::-1]:
243
+ for i in range(num_res_blocks + 1):
244
+ ich = input_block_chans.pop()
245
+ layers = [
246
+ ResBlock(
247
+ ch + ich,
248
+ time_embed_dim,
249
+ dropout,
250
+ out_channels=model_channels * mult,
251
+ dims=dims,
252
+ use_checkpoint=use_checkpoint,
253
+ use_scale_shift_norm=use_scale_shift_norm,
254
+ )
255
+ ]
256
+ ch = model_channels * mult
257
+ if ds in attention_resolutions:
258
+ if num_head_channels == -1:
259
+ dim_head = ch // num_heads
260
+ else:
261
+ num_heads = ch // num_head_channels
262
+ dim_head = num_head_channels
263
+ if legacy:
264
+ #num_heads = 1
265
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
266
+ layers.append(
267
+ AttentionBlock(
268
+ ch,
269
+ use_checkpoint=use_checkpoint,
270
+ num_heads=num_heads_upsample,
271
+ num_head_channels=dim_head,
272
+ use_new_attention_order=use_new_attention_order,
273
+ ) if not use_spatial_transformer else SpatialTransformer(
274
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
275
+ )
276
+ )
277
+ if level and i == num_res_blocks:
278
+ out_ch = ch
279
+ layers.append(
280
+ ResBlock(
281
+ ch,
282
+ time_embed_dim,
283
+ dropout,
284
+ out_channels=out_ch,
285
+ dims=dims,
286
+ use_checkpoint=use_checkpoint,
287
+ use_scale_shift_norm=use_scale_shift_norm,
288
+ up=True,
289
+ )
290
+ if resblock_updown
291
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
292
+ )
293
+ ds //= 2
294
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
295
+ self._feature_size += ch
296
+
297
+ self.out = nn.Sequential(
298
+ normalization(ch),
299
+ nn.SiLU(),
300
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
301
+ )
302
+ if self.predict_codebook_ids:
303
+ self.id_predictor = nn.Sequential(
304
+ normalization(ch),
305
+ conv_nd(dims, model_channels, n_embed, 1),
306
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
307
+ )
308
+
309
+ self.use_context_project = use_context_project
310
+ if use_context_project:
311
+ self.context_project = linear(context_dim, time_embed_dim)
312
+ self.use_context_attn = use_context_attn
313
+
314
+
315
+ def convert_to_fp16(self):
316
+ """
317
+ Convert the torso of the model to float16.
318
+ """
319
+ self.input_blocks.apply(convert_module_to_f16)
320
+ self.middle_block.apply(convert_module_to_f16)
321
+ self.output_blocks.apply(convert_module_to_f16)
322
+
323
+ def convert_to_fp32(self):
324
+ """
325
+ Convert the torso of the model to float32.
326
+ """
327
+ self.input_blocks.apply(convert_module_to_f32)
328
+ self.middle_block.apply(convert_module_to_f32)
329
+ self.output_blocks.apply(convert_module_to_f32)
330
+
331
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
332
+ """
333
+ Apply the model to an input batch.
334
+ :param x: an [N x C x ...] Tensor of inputs.
335
+ :param timesteps: a 1-D batch of timesteps.
336
+ :param context: conditioning plugged in via crossattn
337
+ :param y: an [N] Tensor of labels, if class-conditional.
338
+ :return: an [N x C x ...] Tensor of outputs.
339
+ """
340
+ assert (y is not None) == (
341
+ self.num_classes is not None
342
+ ), "must specify y if and only if the model is class-conditional"
343
+ hs = []
344
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
345
+ emb = self.time_embed(t_emb)
346
+
347
+ if self.num_classes is not None:
348
+ assert y.shape == (x.shape[0],)
349
+ emb = emb + self.label_emb(y)
350
+
351
+ # For text-to-audio using global CLIP
352
+ if self.use_context_project:
353
+ context = self.context_project(context)
354
+ emb = emb + context.squeeze(1)
355
+
356
+ h = x.type(self.dtype)
357
+ for module in self.input_blocks:
358
+ h = module(h, emb, context if self.use_context_attn else None)
359
+ hs.append(h)
360
+ h = self.middle_block(h, emb, context if self.use_context_attn else None)
361
+ for module in self.output_blocks:
362
+ h = th.cat([h, hs.pop()], dim=1)
363
+ h = module(h, emb, context if self.use_context_attn else None)
364
+ h = h.type(x.dtype)
365
+ if self.predict_codebook_ids:
366
+ return self.id_predictor(h)
367
+ else:
368
+ return self.out(h)
ldm/modules/diffusionmodules/model.py ADDED
@@ -0,0 +1,835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from einops import rearrange
7
+
8
+ from ldm.util import instantiate_from_config
9
+ from ldm.modules.attention import LinearAttention
10
+
11
+
12
+ def get_timestep_embedding(timesteps, embedding_dim):
13
+ """
14
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
15
+ From Fairseq.
16
+ Build sinusoidal embeddings.
17
+ This matches the implementation in tensor2tensor, but differs slightly
18
+ from the description in Section 3.5 of "Attention Is All You Need".
19
+ """
20
+ assert len(timesteps.shape) == 1
21
+
22
+ half_dim = embedding_dim // 2
23
+ emb = math.log(10000) / (half_dim - 1)
24
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
25
+ emb = emb.to(device=timesteps.device)
26
+ emb = timesteps.float()[:, None] * emb[None, :]
27
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
28
+ if embedding_dim % 2 == 1: # zero pad
29
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
30
+ return emb
31
+
32
+
33
+ def nonlinearity(x):
34
+ # swish
35
+ return x*torch.sigmoid(x)
36
+
37
+
38
+ def Normalize(in_channels, num_groups=32):
39
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
40
+
41
+
42
+ class Upsample(nn.Module):
43
+ def __init__(self, in_channels, with_conv):
44
+ super().__init__()
45
+ self.with_conv = with_conv
46
+ if self.with_conv:
47
+ self.conv = torch.nn.Conv2d(in_channels,
48
+ in_channels,
49
+ kernel_size=3,
50
+ stride=1,
51
+ padding=1)
52
+
53
+ def forward(self, x):
54
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
55
+ if self.with_conv:
56
+ x = self.conv(x)
57
+ return x
58
+
59
+
60
+ class Downsample(nn.Module):
61
+ def __init__(self, in_channels, with_conv):
62
+ super().__init__()
63
+ self.with_conv = with_conv
64
+ if self.with_conv:
65
+ # no asymmetric padding in torch conv, must do it ourselves
66
+ self.conv = torch.nn.Conv2d(in_channels,
67
+ in_channels,
68
+ kernel_size=3,
69
+ stride=2,
70
+ padding=0)
71
+
72
+ def forward(self, x):
73
+ if self.with_conv:
74
+ pad = (0,1,0,1)
75
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
76
+ x = self.conv(x)
77
+ else:
78
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
79
+ return x
80
+
81
+
82
+ class ResnetBlock(nn.Module):
83
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
84
+ dropout, temb_channels=512):
85
+ super().__init__()
86
+ self.in_channels = in_channels
87
+ out_channels = in_channels if out_channels is None else out_channels
88
+ self.out_channels = out_channels
89
+ self.use_conv_shortcut = conv_shortcut
90
+
91
+ self.norm1 = Normalize(in_channels)
92
+ self.conv1 = torch.nn.Conv2d(in_channels,
93
+ out_channels,
94
+ kernel_size=3,
95
+ stride=1,
96
+ padding=1)
97
+ if temb_channels > 0:
98
+ self.temb_proj = torch.nn.Linear(temb_channels,
99
+ out_channels)
100
+ self.norm2 = Normalize(out_channels)
101
+ self.dropout = torch.nn.Dropout(dropout)
102
+ self.conv2 = torch.nn.Conv2d(out_channels,
103
+ out_channels,
104
+ kernel_size=3,
105
+ stride=1,
106
+ padding=1)
107
+ if self.in_channels != self.out_channels:
108
+ if self.use_conv_shortcut:
109
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
110
+ out_channels,
111
+ kernel_size=3,
112
+ stride=1,
113
+ padding=1)
114
+ else:
115
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
116
+ out_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+
121
+ def forward(self, x, temb):
122
+ h = x
123
+ h = self.norm1(h)
124
+ h = nonlinearity(h)
125
+ h = self.conv1(h)
126
+
127
+ if temb is not None:
128
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
129
+
130
+ h = self.norm2(h)
131
+ h = nonlinearity(h)
132
+ h = self.dropout(h)
133
+ h = self.conv2(h)
134
+
135
+ if self.in_channels != self.out_channels:
136
+ if self.use_conv_shortcut:
137
+ x = self.conv_shortcut(x)
138
+ else:
139
+ x = self.nin_shortcut(x)
140
+
141
+ return x+h
142
+
143
+
144
+ class LinAttnBlock(LinearAttention):
145
+ """to match AttnBlock usage"""
146
+ def __init__(self, in_channels):
147
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
148
+
149
+
150
+ class AttnBlock(nn.Module):
151
+ def __init__(self, in_channels):
152
+ super().__init__()
153
+ self.in_channels = in_channels
154
+
155
+ self.norm = Normalize(in_channels)
156
+ self.q = torch.nn.Conv2d(in_channels,
157
+ in_channels,
158
+ kernel_size=1,
159
+ stride=1,
160
+ padding=0)
161
+ self.k = torch.nn.Conv2d(in_channels,
162
+ in_channels,
163
+ kernel_size=1,
164
+ stride=1,
165
+ padding=0)
166
+ self.v = torch.nn.Conv2d(in_channels,
167
+ in_channels,
168
+ kernel_size=1,
169
+ stride=1,
170
+ padding=0)
171
+ self.proj_out = torch.nn.Conv2d(in_channels,
172
+ in_channels,
173
+ kernel_size=1,
174
+ stride=1,
175
+ padding=0)
176
+
177
+
178
+ def forward(self, x):
179
+ h_ = x
180
+ h_ = self.norm(h_)
181
+ q = self.q(h_)
182
+ k = self.k(h_)
183
+ v = self.v(h_)
184
+
185
+ # compute attention
186
+ b,c,h,w = q.shape
187
+ q = q.reshape(b,c,h*w)
188
+ q = q.permute(0,2,1) # b,hw,c
189
+ k = k.reshape(b,c,h*w) # b,c,hw
190
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
191
+ w_ = w_ * (int(c)**(-0.5))
192
+ w_ = torch.nn.functional.softmax(w_, dim=2)
193
+
194
+ # attend to values
195
+ v = v.reshape(b,c,h*w)
196
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
197
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
198
+ h_ = h_.reshape(b,c,h,w)
199
+
200
+ h_ = self.proj_out(h_)
201
+
202
+ return x+h_
203
+
204
+
205
+ def make_attn(in_channels, attn_type="vanilla"):
206
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
207
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
208
+ if attn_type == "vanilla":
209
+ return AttnBlock(in_channels)
210
+ elif attn_type == "none":
211
+ return nn.Identity(in_channels)
212
+ else:
213
+ return LinAttnBlock(in_channels)
214
+
215
+
216
+ class Model(nn.Module):
217
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
218
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
219
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
220
+ super().__init__()
221
+ if use_linear_attn: attn_type = "linear"
222
+ self.ch = ch
223
+ self.temb_ch = self.ch*4
224
+ self.num_resolutions = len(ch_mult)
225
+ self.num_res_blocks = num_res_blocks
226
+ self.resolution = resolution
227
+ self.in_channels = in_channels
228
+
229
+ self.use_timestep = use_timestep
230
+ if self.use_timestep:
231
+ # timestep embedding
232
+ self.temb = nn.Module()
233
+ self.temb.dense = nn.ModuleList([
234
+ torch.nn.Linear(self.ch,
235
+ self.temb_ch),
236
+ torch.nn.Linear(self.temb_ch,
237
+ self.temb_ch),
238
+ ])
239
+
240
+ # downsampling
241
+ self.conv_in = torch.nn.Conv2d(in_channels,
242
+ self.ch,
243
+ kernel_size=3,
244
+ stride=1,
245
+ padding=1)
246
+
247
+ curr_res = resolution
248
+ in_ch_mult = (1,)+tuple(ch_mult)
249
+ self.down = nn.ModuleList()
250
+ for i_level in range(self.num_resolutions):
251
+ block = nn.ModuleList()
252
+ attn = nn.ModuleList()
253
+ block_in = ch*in_ch_mult[i_level]
254
+ block_out = ch*ch_mult[i_level]
255
+ for i_block in range(self.num_res_blocks):
256
+ block.append(ResnetBlock(in_channels=block_in,
257
+ out_channels=block_out,
258
+ temb_channels=self.temb_ch,
259
+ dropout=dropout))
260
+ block_in = block_out
261
+ if curr_res in attn_resolutions:
262
+ attn.append(make_attn(block_in, attn_type=attn_type))
263
+ down = nn.Module()
264
+ down.block = block
265
+ down.attn = attn
266
+ if i_level != self.num_resolutions-1:
267
+ down.downsample = Downsample(block_in, resamp_with_conv)
268
+ curr_res = curr_res // 2
269
+ self.down.append(down)
270
+
271
+ # middle
272
+ self.mid = nn.Module()
273
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
274
+ out_channels=block_in,
275
+ temb_channels=self.temb_ch,
276
+ dropout=dropout)
277
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
278
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
279
+ out_channels=block_in,
280
+ temb_channels=self.temb_ch,
281
+ dropout=dropout)
282
+
283
+ # upsampling
284
+ self.up = nn.ModuleList()
285
+ for i_level in reversed(range(self.num_resolutions)):
286
+ block = nn.ModuleList()
287
+ attn = nn.ModuleList()
288
+ block_out = ch*ch_mult[i_level]
289
+ skip_in = ch*ch_mult[i_level]
290
+ for i_block in range(self.num_res_blocks+1):
291
+ if i_block == self.num_res_blocks:
292
+ skip_in = ch*in_ch_mult[i_level]
293
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
294
+ out_channels=block_out,
295
+ temb_channels=self.temb_ch,
296
+ dropout=dropout))
297
+ block_in = block_out
298
+ if curr_res in attn_resolutions:
299
+ attn.append(make_attn(block_in, attn_type=attn_type))
300
+ up = nn.Module()
301
+ up.block = block
302
+ up.attn = attn
303
+ if i_level != 0:
304
+ up.upsample = Upsample(block_in, resamp_with_conv)
305
+ curr_res = curr_res * 2
306
+ self.up.insert(0, up) # prepend to get consistent order
307
+
308
+ # end
309
+ self.norm_out = Normalize(block_in)
310
+ self.conv_out = torch.nn.Conv2d(block_in,
311
+ out_ch,
312
+ kernel_size=3,
313
+ stride=1,
314
+ padding=1)
315
+
316
+ def forward(self, x, t=None, context=None):
317
+ #assert x.shape[2] == x.shape[3] == self.resolution
318
+ if context is not None:
319
+ # assume aligned context, cat along channel axis
320
+ x = torch.cat((x, context), dim=1)
321
+ if self.use_timestep:
322
+ # timestep embedding
323
+ assert t is not None
324
+ temb = get_timestep_embedding(t, self.ch)
325
+ temb = self.temb.dense[0](temb)
326
+ temb = nonlinearity(temb)
327
+ temb = self.temb.dense[1](temb)
328
+ else:
329
+ temb = None
330
+
331
+ # downsampling
332
+ hs = [self.conv_in(x)]
333
+ for i_level in range(self.num_resolutions):
334
+ for i_block in range(self.num_res_blocks):
335
+ h = self.down[i_level].block[i_block](hs[-1], temb)
336
+ if len(self.down[i_level].attn) > 0:
337
+ h = self.down[i_level].attn[i_block](h)
338
+ hs.append(h)
339
+ if i_level != self.num_resolutions-1:
340
+ hs.append(self.down[i_level].downsample(hs[-1]))
341
+
342
+ # middle
343
+ h = hs[-1]
344
+ h = self.mid.block_1(h, temb)
345
+ h = self.mid.attn_1(h)
346
+ h = self.mid.block_2(h, temb)
347
+
348
+ # upsampling
349
+ for i_level in reversed(range(self.num_resolutions)):
350
+ for i_block in range(self.num_res_blocks+1):
351
+ h = self.up[i_level].block[i_block](
352
+ torch.cat([h, hs.pop()], dim=1), temb)
353
+ if len(self.up[i_level].attn) > 0:
354
+ h = self.up[i_level].attn[i_block](h)
355
+ if i_level != 0:
356
+ h = self.up[i_level].upsample(h)
357
+
358
+ # end
359
+ h = self.norm_out(h)
360
+ h = nonlinearity(h)
361
+ h = self.conv_out(h)
362
+ return h
363
+
364
+ def get_last_layer(self):
365
+ return self.conv_out.weight
366
+
367
+
368
+ class Encoder(nn.Module):
369
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
370
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
371
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
372
+ **ignore_kwargs):
373
+ super().__init__()
374
+ if use_linear_attn: attn_type = "linear"
375
+ self.ch = ch
376
+ self.temb_ch = 0
377
+ self.num_resolutions = len(ch_mult)
378
+ self.num_res_blocks = num_res_blocks
379
+ self.resolution = resolution
380
+ self.in_channels = in_channels
381
+
382
+ # downsampling
383
+ self.conv_in = torch.nn.Conv2d(in_channels,
384
+ self.ch,
385
+ kernel_size=3,
386
+ stride=1,
387
+ padding=1)
388
+
389
+ curr_res = resolution
390
+ in_ch_mult = (1,)+tuple(ch_mult)
391
+ self.in_ch_mult = in_ch_mult
392
+ self.down = nn.ModuleList()
393
+ for i_level in range(self.num_resolutions):
394
+ block = nn.ModuleList()
395
+ attn = nn.ModuleList()
396
+ block_in = ch*in_ch_mult[i_level]
397
+ block_out = ch*ch_mult[i_level]
398
+ for i_block in range(self.num_res_blocks):
399
+ block.append(ResnetBlock(in_channels=block_in,
400
+ out_channels=block_out,
401
+ temb_channels=self.temb_ch,
402
+ dropout=dropout))
403
+ block_in = block_out
404
+ if curr_res in attn_resolutions:
405
+ attn.append(make_attn(block_in, attn_type=attn_type))# vanilla attention
406
+ down = nn.Module()
407
+ down.block = block
408
+ down.attn = attn
409
+ if i_level != self.num_resolutions-1:
410
+ down.downsample = Downsample(block_in, resamp_with_conv)
411
+ curr_res = curr_res // 2
412
+ self.down.append(down)
413
+
414
+ # middle
415
+ self.mid = nn.Module()
416
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
417
+ out_channels=block_in,
418
+ temb_channels=self.temb_ch,
419
+ dropout=dropout)
420
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
421
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
422
+ out_channels=block_in,
423
+ temb_channels=self.temb_ch,
424
+ dropout=dropout)
425
+
426
+ # end
427
+ self.norm_out = Normalize(block_in)# GroupNorm
428
+ self.conv_out = torch.nn.Conv2d(block_in,
429
+ 2*z_channels if double_z else z_channels,
430
+ kernel_size=3,
431
+ stride=1,
432
+ padding=1)
433
+
434
+ def forward(self, x):
435
+ # timestep embedding
436
+ temb = None
437
+
438
+ # downsampling
439
+ hs = [self.conv_in(x)]
440
+ for i_level in range(self.num_resolutions):
441
+ for i_block in range(self.num_res_blocks):
442
+ h = self.down[i_level].block[i_block](hs[-1], temb)
443
+ if len(self.down[i_level].attn) > 0:
444
+ h = self.down[i_level].attn[i_block](h)
445
+ hs.append(h)
446
+ if i_level != self.num_resolutions-1:
447
+ hs.append(self.down[i_level].downsample(hs[-1]))
448
+
449
+ # middle
450
+ h = hs[-1]
451
+ h = self.mid.block_1(h, temb)
452
+ h = self.mid.attn_1(h)
453
+ h = self.mid.block_2(h, temb)
454
+
455
+ # end
456
+ h = self.norm_out(h)
457
+ h = nonlinearity(h)
458
+ h = self.conv_out(h)
459
+ return h
460
+
461
+
462
+ class Decoder(nn.Module):
463
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
464
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
465
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
466
+ attn_type="vanilla", **ignorekwargs):
467
+ super().__init__()
468
+ if use_linear_attn: attn_type = "linear"
469
+ self.ch = ch
470
+ self.temb_ch = 0
471
+ self.num_resolutions = len(ch_mult)
472
+ self.num_res_blocks = num_res_blocks
473
+ self.resolution = resolution
474
+ self.in_channels = in_channels
475
+ self.give_pre_end = give_pre_end
476
+ self.tanh_out = tanh_out
477
+
478
+ # compute in_ch_mult, block_in and curr_res at lowest res
479
+ in_ch_mult = (1,)+tuple(ch_mult)
480
+ block_in = ch*ch_mult[self.num_resolutions-1]
481
+ curr_res = resolution // 2**(self.num_resolutions-1)
482
+ self.z_shape = (1,z_channels,curr_res,curr_res)
483
+ print("Working with z of shape {} = {} dimensions.".format(
484
+ self.z_shape, np.prod(self.z_shape)))
485
+
486
+ # z to block_in
487
+ self.conv_in = torch.nn.Conv2d(z_channels,
488
+ block_in,
489
+ kernel_size=3,
490
+ stride=1,
491
+ padding=1)
492
+
493
+ # middle
494
+ self.mid = nn.Module()
495
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
496
+ out_channels=block_in,
497
+ temb_channels=self.temb_ch,
498
+ dropout=dropout)
499
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
500
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
501
+ out_channels=block_in,
502
+ temb_channels=self.temb_ch,
503
+ dropout=dropout)
504
+
505
+ # upsampling
506
+ self.up = nn.ModuleList()
507
+ for i_level in reversed(range(self.num_resolutions)):
508
+ block = nn.ModuleList()
509
+ attn = nn.ModuleList()
510
+ block_out = ch*ch_mult[i_level]
511
+ for i_block in range(self.num_res_blocks+1):
512
+ block.append(ResnetBlock(in_channels=block_in,
513
+ out_channels=block_out,
514
+ temb_channels=self.temb_ch,
515
+ dropout=dropout))
516
+ block_in = block_out
517
+ if curr_res in attn_resolutions:
518
+ attn.append(make_attn(block_in, attn_type=attn_type))
519
+ up = nn.Module()
520
+ up.block = block
521
+ up.attn = attn
522
+ if i_level != 0:
523
+ up.upsample = Upsample(block_in, resamp_with_conv)
524
+ curr_res = curr_res * 2
525
+ self.up.insert(0, up) # prepend to get consistent order
526
+
527
+ # end
528
+ self.norm_out = Normalize(block_in)
529
+ self.conv_out = torch.nn.Conv2d(block_in,
530
+ out_ch,
531
+ kernel_size=3,
532
+ stride=1,
533
+ padding=1)
534
+
535
+ def forward(self, z):
536
+ #assert z.shape[1:] == self.z_shape[1:]
537
+ self.last_z_shape = z.shape
538
+
539
+ # timestep embedding
540
+ temb = None
541
+
542
+ # z to block_in
543
+ h = self.conv_in(z)
544
+
545
+ # middle
546
+ h = self.mid.block_1(h, temb)
547
+ h = self.mid.attn_1(h)
548
+ h = self.mid.block_2(h, temb)
549
+
550
+ # upsampling
551
+ for i_level in reversed(range(self.num_resolutions)):
552
+ for i_block in range(self.num_res_blocks+1):
553
+ h = self.up[i_level].block[i_block](h, temb)
554
+ if len(self.up[i_level].attn) > 0:
555
+ h = self.up[i_level].attn[i_block](h)
556
+ if i_level != 0:
557
+ h = self.up[i_level].upsample(h)
558
+
559
+ # end
560
+ if self.give_pre_end:
561
+ return h
562
+
563
+ h = self.norm_out(h)
564
+ h = nonlinearity(h)
565
+ h = self.conv_out(h)
566
+ if self.tanh_out:
567
+ h = torch.tanh(h)
568
+ return h
569
+
570
+
571
+ class SimpleDecoder(nn.Module):
572
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
573
+ super().__init__()
574
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
575
+ ResnetBlock(in_channels=in_channels,
576
+ out_channels=2 * in_channels,
577
+ temb_channels=0, dropout=0.0),
578
+ ResnetBlock(in_channels=2 * in_channels,
579
+ out_channels=4 * in_channels,
580
+ temb_channels=0, dropout=0.0),
581
+ ResnetBlock(in_channels=4 * in_channels,
582
+ out_channels=2 * in_channels,
583
+ temb_channels=0, dropout=0.0),
584
+ nn.Conv2d(2*in_channels, in_channels, 1),
585
+ Upsample(in_channels, with_conv=True)])
586
+ # end
587
+ self.norm_out = Normalize(in_channels)
588
+ self.conv_out = torch.nn.Conv2d(in_channels,
589
+ out_channels,
590
+ kernel_size=3,
591
+ stride=1,
592
+ padding=1)
593
+
594
+ def forward(self, x):
595
+ for i, layer in enumerate(self.model):
596
+ if i in [1,2,3]:
597
+ x = layer(x, None)
598
+ else:
599
+ x = layer(x)
600
+
601
+ h = self.norm_out(x)
602
+ h = nonlinearity(h)
603
+ x = self.conv_out(h)
604
+ return x
605
+
606
+
607
+ class UpsampleDecoder(nn.Module):
608
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
609
+ ch_mult=(2,2), dropout=0.0):
610
+ super().__init__()
611
+ # upsampling
612
+ self.temb_ch = 0
613
+ self.num_resolutions = len(ch_mult)
614
+ self.num_res_blocks = num_res_blocks
615
+ block_in = in_channels
616
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
617
+ self.res_blocks = nn.ModuleList()
618
+ self.upsample_blocks = nn.ModuleList()
619
+ for i_level in range(self.num_resolutions):
620
+ res_block = []
621
+ block_out = ch * ch_mult[i_level]
622
+ for i_block in range(self.num_res_blocks + 1):
623
+ res_block.append(ResnetBlock(in_channels=block_in,
624
+ out_channels=block_out,
625
+ temb_channels=self.temb_ch,
626
+ dropout=dropout))
627
+ block_in = block_out
628
+ self.res_blocks.append(nn.ModuleList(res_block))
629
+ if i_level != self.num_resolutions - 1:
630
+ self.upsample_blocks.append(Upsample(block_in, True))
631
+ curr_res = curr_res * 2
632
+
633
+ # end
634
+ self.norm_out = Normalize(block_in)
635
+ self.conv_out = torch.nn.Conv2d(block_in,
636
+ out_channels,
637
+ kernel_size=3,
638
+ stride=1,
639
+ padding=1)
640
+
641
+ def forward(self, x):
642
+ # upsampling
643
+ h = x
644
+ for k, i_level in enumerate(range(self.num_resolutions)):
645
+ for i_block in range(self.num_res_blocks + 1):
646
+ h = self.res_blocks[i_level][i_block](h, None)
647
+ if i_level != self.num_resolutions - 1:
648
+ h = self.upsample_blocks[k](h)
649
+ h = self.norm_out(h)
650
+ h = nonlinearity(h)
651
+ h = self.conv_out(h)
652
+ return h
653
+
654
+
655
+ class LatentRescaler(nn.Module):
656
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
657
+ super().__init__()
658
+ # residual block, interpolate, residual block
659
+ self.factor = factor
660
+ self.conv_in = nn.Conv2d(in_channels,
661
+ mid_channels,
662
+ kernel_size=3,
663
+ stride=1,
664
+ padding=1)
665
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
666
+ out_channels=mid_channels,
667
+ temb_channels=0,
668
+ dropout=0.0) for _ in range(depth)])
669
+ self.attn = AttnBlock(mid_channels)
670
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
671
+ out_channels=mid_channels,
672
+ temb_channels=0,
673
+ dropout=0.0) for _ in range(depth)])
674
+
675
+ self.conv_out = nn.Conv2d(mid_channels,
676
+ out_channels,
677
+ kernel_size=1,
678
+ )
679
+
680
+ def forward(self, x):
681
+ x = self.conv_in(x)
682
+ for block in self.res_block1:
683
+ x = block(x, None)
684
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
685
+ x = self.attn(x)
686
+ for block in self.res_block2:
687
+ x = block(x, None)
688
+ x = self.conv_out(x)
689
+ return x
690
+
691
+
692
+ class MergedRescaleEncoder(nn.Module):
693
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
694
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
695
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
696
+ super().__init__()
697
+ intermediate_chn = ch * ch_mult[-1]
698
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
699
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
700
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
701
+ out_ch=None)
702
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
703
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
704
+
705
+ def forward(self, x):
706
+ x = self.encoder(x)
707
+ x = self.rescaler(x)
708
+ return x
709
+
710
+
711
+ class MergedRescaleDecoder(nn.Module):
712
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
713
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
714
+ super().__init__()
715
+ tmp_chn = z_channels*ch_mult[-1]
716
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
717
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
718
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
719
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
720
+ out_channels=tmp_chn, depth=rescale_module_depth)
721
+
722
+ def forward(self, x):
723
+ x = self.rescaler(x)
724
+ x = self.decoder(x)
725
+ return x
726
+
727
+
728
+ class Upsampler(nn.Module):
729
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
730
+ super().__init__()
731
+ assert out_size >= in_size
732
+ num_blocks = int(np.log2(out_size//in_size))+1
733
+ factor_up = 1.+ (out_size % in_size)
734
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
735
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
736
+ out_channels=in_channels)
737
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
738
+ attn_resolutions=[], in_channels=None, ch=in_channels,
739
+ ch_mult=[ch_mult for _ in range(num_blocks)])
740
+
741
+ def forward(self, x):
742
+ x = self.rescaler(x)
743
+ x = self.decoder(x)
744
+ return x
745
+
746
+
747
+ class Resize(nn.Module):
748
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
749
+ super().__init__()
750
+ self.with_conv = learned
751
+ self.mode = mode
752
+ if self.with_conv:
753
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
754
+ raise NotImplementedError()
755
+ assert in_channels is not None
756
+ # no asymmetric padding in torch conv, must do it ourselves
757
+ self.conv = torch.nn.Conv2d(in_channels,
758
+ in_channels,
759
+ kernel_size=4,
760
+ stride=2,
761
+ padding=1)
762
+
763
+ def forward(self, x, scale_factor=1.0):
764
+ if scale_factor==1.0:
765
+ return x
766
+ else:
767
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
768
+ return x
769
+
770
+ class FirstStagePostProcessor(nn.Module):
771
+
772
+ def __init__(self, ch_mult:list, in_channels,
773
+ pretrained_model:nn.Module=None,
774
+ reshape=False,
775
+ n_channels=None,
776
+ dropout=0.,
777
+ pretrained_config=None):
778
+ super().__init__()
779
+ if pretrained_config is None:
780
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
781
+ self.pretrained_model = pretrained_model
782
+ else:
783
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
784
+ self.instantiate_pretrained(pretrained_config)
785
+
786
+ self.do_reshape = reshape
787
+
788
+ if n_channels is None:
789
+ n_channels = self.pretrained_model.encoder.ch
790
+
791
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
792
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
793
+ stride=1,padding=1)
794
+
795
+ blocks = []
796
+ downs = []
797
+ ch_in = n_channels
798
+ for m in ch_mult:
799
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
800
+ ch_in = m * n_channels
801
+ downs.append(Downsample(ch_in, with_conv=False))
802
+
803
+ self.model = nn.ModuleList(blocks)
804
+ self.downsampler = nn.ModuleList(downs)
805
+
806
+
807
+ def instantiate_pretrained(self, config):
808
+ model = instantiate_from_config(config)
809
+ self.pretrained_model = model.eval()
810
+ # self.pretrained_model.train = False
811
+ for param in self.pretrained_model.parameters():
812
+ param.requires_grad = False
813
+
814
+
815
+ @torch.no_grad()
816
+ def encode_with_pretrained(self,x):
817
+ c = self.pretrained_model.encode(x)
818
+ if isinstance(c, DiagonalGaussianDistribution):
819
+ c = c.mode()
820
+ return c
821
+
822
+ def forward(self,x):
823
+ z_fs = self.encode_with_pretrained(x)
824
+ z = self.proj_norm(z_fs)
825
+ z = self.proj(z)
826
+ z = nonlinearity(z)
827
+
828
+ for submodel, downmodel in zip(self.model,self.downsampler):
829
+ z = submodel(z,temb=None)
830
+ z = downmodel(z)
831
+
832
+ if self.do_reshape:
833
+ z = rearrange(z,'b c h w -> b (h w) c')
834
+ return z
835
+
ldm/modules/diffusionmodules/openaimodel.py ADDED
@@ -0,0 +1,963 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from functools import partial
3
+ import math
4
+ from typing import Iterable
5
+
6
+ import numpy as np
7
+ import torch as th
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from ldm.modules.diffusionmodules.util import (
12
+ checkpoint,
13
+ conv_nd,
14
+ linear,
15
+ avg_pool_nd,
16
+ zero_module,
17
+ normalization,
18
+ timestep_embedding,
19
+ )
20
+ from ldm.modules.attention import SpatialTransformer
21
+
22
+
23
+ # dummy replace
24
+ def convert_module_to_f16(x):
25
+ pass
26
+
27
+ def convert_module_to_f32(x):
28
+ pass
29
+
30
+
31
+ ## go
32
+ class AttentionPool2d(nn.Module):
33
+ """
34
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
35
+ """
36
+
37
+ def __init__(
38
+ self,
39
+ spacial_dim: int,
40
+ embed_dim: int,
41
+ num_heads_channels: int,
42
+ output_dim: int = None,
43
+ ):
44
+ super().__init__()
45
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
46
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
47
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
48
+ self.num_heads = embed_dim // num_heads_channels
49
+ self.attention = QKVAttention(self.num_heads)
50
+
51
+ def forward(self, x):
52
+ b, c, *_spatial = x.shape
53
+ x = x.reshape(b, c, -1) # NC(HW)
54
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
55
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
56
+ x = self.qkv_proj(x)
57
+ x = self.attention(x)
58
+ x = self.c_proj(x)
59
+ return x[:, :, 0]
60
+
61
+
62
+ class TimestepBlock(nn.Module):
63
+ """
64
+ Any module where forward() takes timestep embeddings as a second argument.
65
+ """
66
+
67
+ @abstractmethod
68
+ def forward(self, x, emb):
69
+ """
70
+ Apply the module to `x` given `emb` timestep embeddings.
71
+ """
72
+
73
+
74
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
75
+ """
76
+ A sequential module that passes timestep embeddings to the children that
77
+ support it as an extra input.
78
+ """
79
+
80
+ def forward(self, x, emb, context=None):
81
+ for layer in self:
82
+ if isinstance(layer, TimestepBlock):
83
+ x = layer(x, emb)
84
+ elif isinstance(layer, SpatialTransformer):
85
+ x = layer(x, context)
86
+ else:
87
+ x = layer(x)
88
+ return x
89
+
90
+
91
+ class Upsample(nn.Module):
92
+ """
93
+ An upsampling layer with an optional convolution.
94
+ :param channels: channels in the inputs and outputs.
95
+ :param use_conv: a bool determining if a convolution is applied.
96
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
97
+ upsampling occurs in the inner-two dimensions.
98
+ """
99
+
100
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
101
+ super().__init__()
102
+ self.channels = channels
103
+ self.out_channels = out_channels or channels
104
+ self.use_conv = use_conv
105
+ self.dims = dims
106
+ if use_conv:
107
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
108
+
109
+ def forward(self, x):
110
+ assert x.shape[1] == self.channels
111
+ if self.dims == 3:
112
+ x = F.interpolate(
113
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
114
+ )
115
+ else:
116
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
117
+ if self.use_conv:
118
+ x = self.conv(x)
119
+ return x
120
+
121
+ class TransposedUpsample(nn.Module):
122
+ 'Learned 2x upsampling without padding'
123
+ def __init__(self, channels, out_channels=None, ks=5):
124
+ super().__init__()
125
+ self.channels = channels
126
+ self.out_channels = out_channels or channels
127
+
128
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
129
+
130
+ def forward(self,x):
131
+ return self.up(x)
132
+
133
+
134
+ class Downsample(nn.Module):
135
+ """
136
+ A downsampling layer with an optional convolution.
137
+ :param channels: channels in the inputs and outputs.
138
+ :param use_conv: a bool determining if a convolution is applied.
139
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
140
+ downsampling occurs in the inner-two dimensions.
141
+ """
142
+
143
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
144
+ super().__init__()
145
+ self.channels = channels
146
+ self.out_channels = out_channels or channels
147
+ self.use_conv = use_conv
148
+ self.dims = dims
149
+ stride = 2 if dims != 3 else (1, 2, 2)
150
+ if use_conv:
151
+ self.op = conv_nd(
152
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
153
+ )
154
+ else:
155
+ assert self.channels == self.out_channels
156
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
157
+
158
+ def forward(self, x):
159
+ assert x.shape[1] == self.channels
160
+ return self.op(x)
161
+
162
+
163
+ class ResBlock(TimestepBlock):
164
+ """
165
+ A residual block that can optionally change the number of channels.
166
+ :param channels: the number of input channels.
167
+ :param emb_channels: the number of timestep embedding channels.
168
+ :param dropout: the rate of dropout.
169
+ :param out_channels: if specified, the number of out channels.
170
+ :param use_conv: if True and out_channels is specified, use a spatial
171
+ convolution instead of a smaller 1x1 convolution to change the
172
+ channels in the skip connection.
173
+ :param dims: determines if the signal is 1D, 2D, or 3D.
174
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
175
+ :param up: if True, use this block for upsampling.
176
+ :param down: if True, use this block for downsampling.
177
+ """
178
+
179
+ def __init__(
180
+ self,
181
+ channels,
182
+ emb_channels,
183
+ dropout,
184
+ out_channels=None,
185
+ use_conv=False,
186
+ use_scale_shift_norm=False,
187
+ dims=2,
188
+ use_checkpoint=False,
189
+ up=False,
190
+ down=False,
191
+ ):
192
+ super().__init__()
193
+ self.channels = channels
194
+ self.emb_channels = emb_channels
195
+ self.dropout = dropout
196
+ self.out_channels = out_channels or channels
197
+ self.use_conv = use_conv
198
+ self.use_checkpoint = use_checkpoint
199
+ self.use_scale_shift_norm = use_scale_shift_norm
200
+
201
+ self.in_layers = nn.Sequential(
202
+ normalization(channels),
203
+ nn.SiLU(),
204
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
205
+ )
206
+
207
+ self.updown = up or down
208
+
209
+ if up:
210
+ self.h_upd = Upsample(channels, False, dims)
211
+ self.x_upd = Upsample(channels, False, dims)
212
+ elif down:
213
+ self.h_upd = Downsample(channels, False, dims)
214
+ self.x_upd = Downsample(channels, False, dims)
215
+ else:
216
+ self.h_upd = self.x_upd = nn.Identity()
217
+
218
+ self.emb_layers = nn.Sequential(
219
+ nn.SiLU(),
220
+ linear(
221
+ emb_channels,
222
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
223
+ ),
224
+ )
225
+ self.out_layers = nn.Sequential(
226
+ normalization(self.out_channels),
227
+ nn.SiLU(),
228
+ nn.Dropout(p=dropout),
229
+ zero_module(
230
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
231
+ ),
232
+ )
233
+
234
+ if self.out_channels == channels:
235
+ self.skip_connection = nn.Identity()
236
+ elif use_conv:
237
+ self.skip_connection = conv_nd(
238
+ dims, channels, self.out_channels, 3, padding=1
239
+ )
240
+ else:
241
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
242
+
243
+ def forward(self, x, emb):
244
+ """
245
+ Apply the block to a Tensor, conditioned on a timestep embedding.
246
+ :param x: an [N x C x ...] Tensor of features.
247
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
248
+ :return: an [N x C x ...] Tensor of outputs.
249
+ """
250
+ return checkpoint(
251
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
252
+ )
253
+
254
+
255
+ def _forward(self, x, emb):
256
+ if self.updown:
257
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
258
+ h = in_rest(x)
259
+ h = self.h_upd(h)
260
+ x = self.x_upd(x)
261
+ h = in_conv(h)
262
+ else:
263
+ h = self.in_layers(x)
264
+ emb_out = self.emb_layers(emb).type(h.dtype)
265
+ while len(emb_out.shape) < len(h.shape):
266
+ emb_out = emb_out[..., None]
267
+ if self.use_scale_shift_norm:
268
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
269
+ scale, shift = th.chunk(emb_out, 2, dim=1)
270
+ h = out_norm(h) * (1 + scale) + shift
271
+ h = out_rest(h)
272
+ else:
273
+ h = h + emb_out
274
+ h = self.out_layers(h)
275
+ return self.skip_connection(x) + h
276
+
277
+
278
+ class AttentionBlock(nn.Module):
279
+ """
280
+ An attention block that allows spatial positions to attend to each other.
281
+ Originally ported from here, but adapted to the N-d case.
282
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
283
+ """
284
+
285
+ def __init__(
286
+ self,
287
+ channels,
288
+ num_heads=1,
289
+ num_head_channels=-1,
290
+ use_checkpoint=False,
291
+ use_new_attention_order=False,
292
+ ):
293
+ super().__init__()
294
+ self.channels = channels
295
+ if num_head_channels == -1:
296
+ self.num_heads = num_heads
297
+ else:
298
+ assert (
299
+ channels % num_head_channels == 0
300
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
301
+ self.num_heads = channels // num_head_channels
302
+ self.use_checkpoint = use_checkpoint
303
+ self.norm = normalization(channels)
304
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
305
+ if use_new_attention_order:
306
+ # split qkv before split heads
307
+ self.attention = QKVAttention(self.num_heads)
308
+ else:
309
+ # split heads before split qkv
310
+ self.attention = QKVAttentionLegacy(self.num_heads)
311
+
312
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
313
+
314
+ def forward(self, x):
315
+ return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
316
+ #return pt_checkpoint(self._forward, x) # pytorch
317
+
318
+ def _forward(self, x):
319
+ b, c, *spatial = x.shape
320
+ x = x.reshape(b, c, -1)
321
+ qkv = self.qkv(self.norm(x))
322
+ h = self.attention(qkv)
323
+ h = self.proj_out(h)
324
+ return (x + h).reshape(b, c, *spatial)
325
+
326
+
327
+ def count_flops_attn(model, _x, y):
328
+ """
329
+ A counter for the `thop` package to count the operations in an
330
+ attention operation.
331
+ Meant to be used like:
332
+ macs, params = thop.profile(
333
+ model,
334
+ inputs=(inputs, timestamps),
335
+ custom_ops={QKVAttention: QKVAttention.count_flops},
336
+ )
337
+ """
338
+ b, c, *spatial = y[0].shape
339
+ num_spatial = int(np.prod(spatial))
340
+ # We perform two matmuls with the same number of ops.
341
+ # The first computes the weight matrix, the second computes
342
+ # the combination of the value vectors.
343
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
344
+ model.total_ops += th.DoubleTensor([matmul_ops])
345
+
346
+
347
+ class QKVAttentionLegacy(nn.Module):
348
+ """
349
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
350
+ """
351
+
352
+ def __init__(self, n_heads):
353
+ super().__init__()
354
+ self.n_heads = n_heads
355
+
356
+ def forward(self, qkv):
357
+ """
358
+ Apply QKV attention.
359
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
360
+ :return: an [N x (H * C) x T] tensor after attention.
361
+ """
362
+ bs, width, length = qkv.shape
363
+ assert width % (3 * self.n_heads) == 0
364
+ ch = width // (3 * self.n_heads)
365
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
366
+ scale = 1 / math.sqrt(math.sqrt(ch))
367
+ weight = th.einsum(
368
+ "bct,bcs->bts", q * scale, k * scale
369
+ ) # More stable with f16 than dividing afterwards
370
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
371
+ a = th.einsum("bts,bcs->bct", weight, v)
372
+ return a.reshape(bs, -1, length)
373
+
374
+ @staticmethod
375
+ def count_flops(model, _x, y):
376
+ return count_flops_attn(model, _x, y)
377
+
378
+
379
+ class QKVAttention(nn.Module):
380
+ """
381
+ A module which performs QKV attention and splits in a different order.
382
+ """
383
+
384
+ def __init__(self, n_heads):
385
+ super().__init__()
386
+ self.n_heads = n_heads
387
+
388
+ def forward(self, qkv):
389
+ """
390
+ Apply QKV attention.
391
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
392
+ :return: an [N x (H * C) x T] tensor after attention.
393
+ """
394
+ bs, width, length = qkv.shape
395
+ assert width % (3 * self.n_heads) == 0
396
+ ch = width // (3 * self.n_heads)
397
+ q, k, v = qkv.chunk(3, dim=1)
398
+ scale = 1 / math.sqrt(math.sqrt(ch))
399
+ weight = th.einsum(
400
+ "bct,bcs->bts",
401
+ (q * scale).view(bs * self.n_heads, ch, length),
402
+ (k * scale).view(bs * self.n_heads, ch, length),
403
+ ) # More stable with f16 than dividing afterwards
404
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
405
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
406
+ return a.reshape(bs, -1, length)
407
+
408
+ @staticmethod
409
+ def count_flops(model, _x, y):
410
+ return count_flops_attn(model, _x, y)
411
+
412
+
413
+ class UNetModel(nn.Module):
414
+ """
415
+ The full UNet model with attention and timestep embedding.
416
+ :param in_channels: channels in the input Tensor.
417
+ :param model_channels: base channel count for the model.
418
+ :param out_channels: channels in the output Tensor.
419
+ :param num_res_blocks: number of residual blocks per downsample.
420
+ :param attention_resolutions: a collection of downsample rates at which
421
+ attention will take place. May be a set, list, or tuple.
422
+ For example, if this contains 4, then at 4x downsampling, attention
423
+ will be used.
424
+ :param dropout: the dropout probability.
425
+ :param channel_mult: channel multiplier for each level of the UNet.
426
+ :param conv_resample: if True, use learned convolutions for upsampling and
427
+ downsampling.
428
+ :param dims: determines if the signal is 1D, 2D, or 3D.
429
+ :param num_classes: if specified (as an int), then this model will be
430
+ class-conditional with `num_classes` classes.
431
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
432
+ :param num_heads: the number of attention heads in each attention layer.
433
+ :param num_heads_channels: if specified, ignore num_heads and instead use
434
+ a fixed channel width per attention head.
435
+ :param num_heads_upsample: works with num_heads to set a different number
436
+ of heads for upsampling. Deprecated.
437
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
438
+ :param resblock_updown: use residual blocks for up/downsampling.
439
+ :param use_new_attention_order: use a different attention pattern for potentially
440
+ increased efficiency.
441
+ """
442
+
443
+ def __init__(
444
+ self,
445
+ image_size,
446
+ in_channels,
447
+ model_channels,
448
+ out_channels,
449
+ num_res_blocks,
450
+ attention_resolutions,
451
+ dropout=0,
452
+ channel_mult=(1, 2, 4, 8),
453
+ conv_resample=True,
454
+ dims=2,
455
+ num_classes=None,
456
+ use_checkpoint=False,
457
+ use_fp16=False,
458
+ num_heads=-1,
459
+ num_head_channels=-1,
460
+ num_heads_upsample=-1,
461
+ use_scale_shift_norm=False,
462
+ resblock_updown=False,
463
+ use_new_attention_order=False,
464
+ use_spatial_transformer=False, # custom transformer support
465
+ transformer_depth=1, # custom transformer support
466
+ context_dim=None, # custom transformer support
467
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
468
+ legacy=True,
469
+ ):
470
+ super().__init__()
471
+ if use_spatial_transformer:
472
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
473
+
474
+ if context_dim is not None:
475
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
476
+ from omegaconf.listconfig import ListConfig
477
+ if type(context_dim) == ListConfig:
478
+ context_dim = list(context_dim)
479
+
480
+ if num_heads_upsample == -1:
481
+ num_heads_upsample = num_heads
482
+
483
+ if num_heads == -1:
484
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
485
+
486
+ if num_head_channels == -1:
487
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
488
+
489
+ self.image_size = image_size
490
+ self.in_channels = in_channels
491
+ self.model_channels = model_channels
492
+ self.out_channels = out_channels
493
+ self.num_res_blocks = num_res_blocks
494
+ self.attention_resolutions = attention_resolutions
495
+ self.dropout = dropout
496
+ self.channel_mult = channel_mult
497
+ self.conv_resample = conv_resample
498
+ self.num_classes = num_classes
499
+ self.use_checkpoint = use_checkpoint
500
+ self.dtype = th.float16 if use_fp16 else th.float32
501
+ self.num_heads = num_heads
502
+ self.num_head_channels = num_head_channels
503
+ self.num_heads_upsample = num_heads_upsample
504
+ self.predict_codebook_ids = n_embed is not None
505
+
506
+ time_embed_dim = model_channels * 4
507
+ self.time_embed = nn.Sequential(
508
+ linear(model_channels, time_embed_dim),
509
+ nn.SiLU(),
510
+ linear(time_embed_dim, time_embed_dim),
511
+ )
512
+
513
+ if self.num_classes is not None:
514
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
515
+
516
+ self.input_blocks = nn.ModuleList(
517
+ [
518
+ TimestepEmbedSequential(
519
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)# conv2d for txt2img/audio
520
+ )
521
+ ]
522
+ )
523
+ self._feature_size = model_channels
524
+ input_block_chans = [model_channels]
525
+ ch = model_channels
526
+ ds = 1
527
+ # downsample blocks
528
+ for level, mult in enumerate(channel_mult):
529
+ for _ in range(num_res_blocks):
530
+ layers = [
531
+ ResBlock(
532
+ ch,
533
+ time_embed_dim,
534
+ dropout,
535
+ out_channels=mult * model_channels,
536
+ dims=dims,
537
+ use_checkpoint=use_checkpoint,
538
+ use_scale_shift_norm=use_scale_shift_norm,
539
+ )
540
+ ]
541
+ ch = mult * model_channels
542
+ if ds in attention_resolutions:
543
+ if num_head_channels == -1:
544
+ dim_head = ch // num_heads
545
+ else:
546
+ num_heads = ch // num_head_channels
547
+ dim_head = num_head_channels
548
+ if legacy:
549
+ #num_heads = 1
550
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
551
+ layers.append(
552
+ AttentionBlock(
553
+ ch,
554
+ use_checkpoint=use_checkpoint,
555
+ num_heads=num_heads,
556
+ num_head_channels=dim_head,
557
+ use_new_attention_order=use_new_attention_order,
558
+ ) if not use_spatial_transformer else SpatialTransformer(# transformer_depth is 1
559
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
560
+ )
561
+ )
562
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
563
+ self._feature_size += ch
564
+ input_block_chans.append(ch)
565
+ if level != len(channel_mult) - 1:
566
+ out_ch = ch
567
+ self.input_blocks.append(
568
+ TimestepEmbedSequential(
569
+ ResBlock(
570
+ ch,
571
+ time_embed_dim,
572
+ dropout,
573
+ out_channels=out_ch,
574
+ dims=dims,
575
+ use_checkpoint=use_checkpoint,
576
+ use_scale_shift_norm=use_scale_shift_norm,
577
+ down=True,
578
+ )
579
+ if resblock_updown
580
+ else Downsample(
581
+ ch, conv_resample, dims=dims, out_channels=out_ch
582
+ )
583
+ )
584
+ )
585
+ ch = out_ch
586
+ input_block_chans.append(ch)
587
+ ds *= 2
588
+ self._feature_size += ch
589
+
590
+ if num_head_channels == -1:
591
+ dim_head = ch // num_heads
592
+ else:
593
+ num_heads = ch // num_head_channels
594
+ dim_head = num_head_channels
595
+ if legacy:
596
+ #num_heads = 1
597
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
598
+ self.middle_block = TimestepEmbedSequential(
599
+ ResBlock(
600
+ ch,
601
+ time_embed_dim,
602
+ dropout,
603
+ dims=dims,
604
+ use_checkpoint=use_checkpoint,
605
+ use_scale_shift_norm=use_scale_shift_norm,
606
+ ),
607
+ AttentionBlock(
608
+ ch,
609
+ use_checkpoint=use_checkpoint,
610
+ num_heads=num_heads,
611
+ num_head_channels=dim_head,
612
+ use_new_attention_order=use_new_attention_order,
613
+ ) if not use_spatial_transformer else SpatialTransformer(
614
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
615
+ ),
616
+ ResBlock(
617
+ ch,
618
+ time_embed_dim,
619
+ dropout,
620
+ dims=dims,
621
+ use_checkpoint=use_checkpoint,
622
+ use_scale_shift_norm=use_scale_shift_norm,
623
+ ),
624
+ )
625
+ self._feature_size += ch
626
+ # upsample blocks
627
+ self.output_blocks = nn.ModuleList([])
628
+ for level, mult in list(enumerate(channel_mult))[::-1]:
629
+ for i in range(num_res_blocks + 1):
630
+ ich = input_block_chans.pop()
631
+ layers = [
632
+ ResBlock(
633
+ ch + ich,
634
+ time_embed_dim,
635
+ dropout,
636
+ out_channels=model_channels * mult,
637
+ dims=dims,
638
+ use_checkpoint=use_checkpoint,
639
+ use_scale_shift_norm=use_scale_shift_norm,
640
+ )
641
+ ]
642
+ ch = model_channels * mult
643
+ if ds in attention_resolutions:
644
+ if num_head_channels == -1:
645
+ dim_head = ch // num_heads
646
+ else:
647
+ num_heads = ch // num_head_channels
648
+ dim_head = num_head_channels
649
+ if legacy:
650
+ #num_heads = 1
651
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
652
+ layers.append(
653
+ AttentionBlock(
654
+ ch,
655
+ use_checkpoint=use_checkpoint,
656
+ num_heads=num_heads_upsample,
657
+ num_head_channels=dim_head,
658
+ use_new_attention_order=use_new_attention_order,
659
+ ) if not use_spatial_transformer else SpatialTransformer(
660
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
661
+ )
662
+ )
663
+ if level and i == num_res_blocks:
664
+ out_ch = ch
665
+ layers.append(
666
+ ResBlock(
667
+ ch,
668
+ time_embed_dim,
669
+ dropout,
670
+ out_channels=out_ch,
671
+ dims=dims,
672
+ use_checkpoint=use_checkpoint,
673
+ use_scale_shift_norm=use_scale_shift_norm,
674
+ up=True,
675
+ )
676
+ if resblock_updown
677
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
678
+ )
679
+ ds //= 2
680
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
681
+ self._feature_size += ch
682
+
683
+ self.out = nn.Sequential(
684
+ normalization(ch),
685
+ nn.SiLU(),
686
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
687
+ )
688
+ if self.predict_codebook_ids:
689
+ self.id_predictor = nn.Sequential(
690
+ normalization(ch),
691
+ conv_nd(dims, model_channels, n_embed, 1),
692
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
693
+ )
694
+
695
+ def convert_to_fp16(self):
696
+ """
697
+ Convert the torso of the model to float16.
698
+ """
699
+ self.input_blocks.apply(convert_module_to_f16)
700
+ self.middle_block.apply(convert_module_to_f16)
701
+ self.output_blocks.apply(convert_module_to_f16)
702
+
703
+ def convert_to_fp32(self):
704
+ """
705
+ Convert the torso of the model to float32.
706
+ """
707
+ self.input_blocks.apply(convert_module_to_f32)
708
+ self.middle_block.apply(convert_module_to_f32)
709
+ self.output_blocks.apply(convert_module_to_f32)
710
+
711
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
712
+ """
713
+ Apply the model to an input batch.
714
+ :param x: an [N x C x ...] Tensor of inputs.
715
+ :param timesteps: a 1-D batch of timesteps,shape [N]
716
+ :param context: conditioning plugged in via crossattn. for txt2img shape is [N,77,context_dim]
717
+ :param y: an [N] Tensor of labels, if class-conditional.
718
+ :return: an [N x C x ...] Tensor of outputs.
719
+ """
720
+ # print(f"in unet {x.shape}")
721
+ assert (y is not None) == (
722
+ self.num_classes is not None
723
+ ), "must specify y if and only if the model is class-conditional"
724
+ hs = []
725
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)# shape [N,self.model_channels]
726
+ emb = self.time_embed(t_emb)# shape [N,context_dim]
727
+
728
+ if self.num_classes is not None:# only for class label
729
+ assert y.shape == (x.shape[0],)
730
+ emb = emb + self.label_emb(y)
731
+
732
+ h = x.type(self.dtype)# [N,C,10,106]
733
+ for module in self.input_blocks:
734
+ h = module(h, emb, context)# 0:[N,self.model_channels,10,106],1:[N,self.model_channels,10,106],2:[N,self.model_channels,10,106] 3:[N,self.model_channels,5,53] 4:[N,self.model_channels,5,53] 5:[N,self.model_channels*2,5,53]
735
+ hs.append(h)
736
+ h = self.middle_block(h, emb, context)# no shape change
737
+ for module in self.output_blocks:
738
+ h = th.cat([h, hs.pop()], dim=1)# 在这里c维度乘2或+self.model_channels,其余维度不变
739
+ h = module(h, emb, context)# 在这里c维度/2回到之前维度,h,w不变或*2
740
+ h = h.type(x.dtype)# 至此h维度和输入x维度回到相同状态
741
+ if self.predict_codebook_ids:
742
+ return self.id_predictor(h)
743
+ else:
744
+ return self.out(h)
745
+
746
+
747
+ class EncoderUNetModel(nn.Module):
748
+ """
749
+ The half UNet model with attention and timestep embedding.
750
+ For usage, see UNet.
751
+ """
752
+
753
+ def __init__(
754
+ self,
755
+ image_size,
756
+ in_channels,
757
+ model_channels,
758
+ out_channels,
759
+ num_res_blocks,
760
+ attention_resolutions,
761
+ dropout=0,
762
+ channel_mult=(1, 2, 4, 8),
763
+ conv_resample=True,
764
+ dims=2,
765
+ use_checkpoint=False,
766
+ use_fp16=False,
767
+ num_heads=1,
768
+ num_head_channels=-1,
769
+ num_heads_upsample=-1,
770
+ use_scale_shift_norm=False,
771
+ resblock_updown=False,
772
+ use_new_attention_order=False,
773
+ pool="adaptive",
774
+ *args,
775
+ **kwargs
776
+ ):
777
+ super().__init__()
778
+
779
+ if num_heads_upsample == -1:
780
+ num_heads_upsample = num_heads
781
+
782
+ self.in_channels = in_channels
783
+ self.model_channels = model_channels
784
+ self.out_channels = out_channels
785
+ self.num_res_blocks = num_res_blocks
786
+ self.attention_resolutions = attention_resolutions
787
+ self.dropout = dropout
788
+ self.channel_mult = channel_mult
789
+ self.conv_resample = conv_resample
790
+ self.use_checkpoint = use_checkpoint
791
+ self.dtype = th.float16 if use_fp16 else th.float32
792
+ self.num_heads = num_heads
793
+ self.num_head_channels = num_head_channels
794
+ self.num_heads_upsample = num_heads_upsample
795
+
796
+ time_embed_dim = model_channels * 4
797
+ self.time_embed = nn.Sequential(
798
+ linear(model_channels, time_embed_dim),
799
+ nn.SiLU(),
800
+ linear(time_embed_dim, time_embed_dim),
801
+ )
802
+
803
+ self.input_blocks = nn.ModuleList(
804
+ [
805
+ TimestepEmbedSequential(
806
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
807
+ )
808
+ ]
809
+ )
810
+ self._feature_size = model_channels
811
+ input_block_chans = [model_channels]
812
+ ch = model_channels
813
+ ds = 1
814
+ for level, mult in enumerate(channel_mult):
815
+ for _ in range(num_res_blocks):
816
+ layers = [
817
+ ResBlock(
818
+ ch,
819
+ time_embed_dim,
820
+ dropout,
821
+ out_channels=mult * model_channels,
822
+ dims=dims,
823
+ use_checkpoint=use_checkpoint,
824
+ use_scale_shift_norm=use_scale_shift_norm,
825
+ )
826
+ ]
827
+ ch = mult * model_channels
828
+ if ds in attention_resolutions:
829
+ layers.append(
830
+ AttentionBlock(
831
+ ch,
832
+ use_checkpoint=use_checkpoint,
833
+ num_heads=num_heads,
834
+ num_head_channels=num_head_channels,
835
+ use_new_attention_order=use_new_attention_order,
836
+ )
837
+ )
838
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
839
+ self._feature_size += ch
840
+ input_block_chans.append(ch)
841
+ if level != len(channel_mult) - 1:
842
+ out_ch = ch
843
+ self.input_blocks.append(
844
+ TimestepEmbedSequential(
845
+ ResBlock(
846
+ ch,
847
+ time_embed_dim,
848
+ dropout,
849
+ out_channels=out_ch,
850
+ dims=dims,
851
+ use_checkpoint=use_checkpoint,
852
+ use_scale_shift_norm=use_scale_shift_norm,
853
+ down=True,
854
+ )
855
+ if resblock_updown
856
+ else Downsample(
857
+ ch, conv_resample, dims=dims, out_channels=out_ch
858
+ )
859
+ )
860
+ )
861
+ ch = out_ch
862
+ input_block_chans.append(ch)
863
+ ds *= 2
864
+ self._feature_size += ch
865
+
866
+ self.middle_block = TimestepEmbedSequential(
867
+ ResBlock(
868
+ ch,
869
+ time_embed_dim,
870
+ dropout,
871
+ dims=dims,
872
+ use_checkpoint=use_checkpoint,
873
+ use_scale_shift_norm=use_scale_shift_norm,
874
+ ),
875
+ AttentionBlock(
876
+ ch,
877
+ use_checkpoint=use_checkpoint,
878
+ num_heads=num_heads,
879
+ num_head_channels=num_head_channels,
880
+ use_new_attention_order=use_new_attention_order,
881
+ ),
882
+ ResBlock(
883
+ ch,
884
+ time_embed_dim,
885
+ dropout,
886
+ dims=dims,
887
+ use_checkpoint=use_checkpoint,
888
+ use_scale_shift_norm=use_scale_shift_norm,
889
+ ),
890
+ )
891
+ self._feature_size += ch
892
+ self.pool = pool
893
+ if pool == "adaptive":
894
+ self.out = nn.Sequential(
895
+ normalization(ch),
896
+ nn.SiLU(),
897
+ nn.AdaptiveAvgPool2d((1, 1)),
898
+ zero_module(conv_nd(dims, ch, out_channels, 1)),
899
+ nn.Flatten(),
900
+ )
901
+ elif pool == "attention":
902
+ assert num_head_channels != -1
903
+ self.out = nn.Sequential(
904
+ normalization(ch),
905
+ nn.SiLU(),
906
+ AttentionPool2d(
907
+ (image_size // ds), ch, num_head_channels, out_channels
908
+ ),
909
+ )
910
+ elif pool == "spatial":
911
+ self.out = nn.Sequential(
912
+ nn.Linear(self._feature_size, 2048),
913
+ nn.ReLU(),
914
+ nn.Linear(2048, self.out_channels),
915
+ )
916
+ elif pool == "spatial_v2":
917
+ self.out = nn.Sequential(
918
+ nn.Linear(self._feature_size, 2048),
919
+ normalization(2048),
920
+ nn.SiLU(),
921
+ nn.Linear(2048, self.out_channels),
922
+ )
923
+ else:
924
+ raise NotImplementedError(f"Unexpected {pool} pooling")
925
+
926
+ def convert_to_fp16(self):
927
+ """
928
+ Convert the torso of the model to float16.
929
+ """
930
+ self.input_blocks.apply(convert_module_to_f16)
931
+ self.middle_block.apply(convert_module_to_f16)
932
+
933
+ def convert_to_fp32(self):
934
+ """
935
+ Convert the torso of the model to float32.
936
+ """
937
+ self.input_blocks.apply(convert_module_to_f32)
938
+ self.middle_block.apply(convert_module_to_f32)
939
+
940
+ def forward(self, x, timesteps):
941
+ """
942
+ Apply the model to an input batch.
943
+ :param x: an [N x C x ...] Tensor of inputs.
944
+ :param timesteps: a 1-D batch of timesteps.
945
+ :return: an [N x K] Tensor of outputs.
946
+ """
947
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
948
+
949
+ results = []
950
+ h = x.type(self.dtype)
951
+ for module in self.input_blocks:
952
+ h = module(h, emb)
953
+ if self.pool.startswith("spatial"):
954
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
955
+ h = self.middle_block(h, emb)
956
+ if self.pool.startswith("spatial"):
957
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
958
+ h = th.cat(results, axis=-1)
959
+ return self.out(h)
960
+ else:
961
+ h = h.type(x.dtype)
962
+ return self.out(h)
963
+
ldm/modules/diffusionmodules/util.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adopted from
2
+ # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
+ # and
4
+ # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ # and
6
+ # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
+ #
8
+ # thanks!
9
+
10
+
11
+ import os
12
+ import math
13
+ import torch
14
+ import torch.nn as nn
15
+ import numpy as np
16
+ from einops import repeat
17
+
18
+ from ldm.util import instantiate_from_config
19
+
20
+
21
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
+ if schedule == "linear":
23
+ betas = (
24
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
+ )
26
+
27
+ elif schedule == "cosine":
28
+ timesteps = (
29
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
+ )
31
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
+ alphas = torch.cos(alphas).pow(2)
33
+ alphas = alphas / alphas[0]
34
+ betas = 1 - alphas[1:] / alphas[:-1]
35
+ betas = np.clip(betas, a_min=0, a_max=0.999)
36
+
37
+ elif schedule == "sqrt_linear":
38
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
39
+ elif schedule == "sqrt":
40
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
41
+ else:
42
+ raise ValueError(f"schedule '{schedule}' unknown.")
43
+ return betas.numpy()
44
+
45
+
46
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
47
+ if ddim_discr_method == 'uniform':
48
+ c = num_ddpm_timesteps // num_ddim_timesteps
49
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
50
+ elif ddim_discr_method == 'quad':
51
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
52
+ else:
53
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
54
+
55
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
56
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
57
+ steps_out = ddim_timesteps + 1
58
+ if verbose:
59
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
60
+ return steps_out
61
+
62
+
63
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
64
+ # select alphas for computing the variance schedule
65
+ alphas = alphacums[ddim_timesteps]
66
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
67
+
68
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
69
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
70
+ if verbose:
71
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
72
+ print(f'For the chosen value of eta, which is {eta}, '
73
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
74
+ return sigmas, alphas, alphas_prev
75
+
76
+
77
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
78
+ """
79
+ Create a beta schedule that discretizes the given alpha_t_bar function,
80
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
81
+ :param num_diffusion_timesteps: the number of betas to produce.
82
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
83
+ produces the cumulative product of (1-beta) up to that
84
+ part of the diffusion process.
85
+ :param max_beta: the maximum beta to use; use values lower than 1 to
86
+ prevent singularities.
87
+ """
88
+ betas = []
89
+ for i in range(num_diffusion_timesteps):
90
+ t1 = i / num_diffusion_timesteps
91
+ t2 = (i + 1) / num_diffusion_timesteps
92
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
93
+ return np.array(betas)
94
+
95
+
96
+ def extract_into_tensor(a, t, x_shape):
97
+ b, *_ = t.shape
98
+ out = a.gather(-1, t)
99
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
100
+
101
+
102
+ def checkpoint(func, inputs, params, flag):
103
+ """
104
+ Evaluate a function without caching intermediate activations, allowing for
105
+ reduced memory at the expense of extra compute in the backward pass.
106
+ :param func: the function to evaluate.
107
+ :param inputs: the argument sequence to pass to `func`.
108
+ :param params: a sequence of parameters `func` depends on but does not
109
+ explicitly take as arguments.
110
+ :param flag: if False, disable gradient checkpointing.
111
+ """
112
+ if flag:
113
+ args = tuple(inputs) + tuple(params)
114
+ return CheckpointFunction.apply(func, len(inputs), *args)
115
+ else:
116
+ return func(*inputs)
117
+
118
+
119
+ class CheckpointFunction(torch.autograd.Function):
120
+ @staticmethod
121
+ def forward(ctx, run_function, length, *args):
122
+ ctx.run_function = run_function
123
+ ctx.input_tensors = list(args[:length])
124
+ ctx.input_params = list(args[length:])
125
+
126
+ with torch.no_grad():
127
+ output_tensors = ctx.run_function(*ctx.input_tensors)
128
+ return output_tensors
129
+
130
+ @staticmethod
131
+ def backward(ctx, *output_grads):
132
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
133
+ with torch.enable_grad():
134
+ # Fixes a bug where the first op in run_function modifies the
135
+ # Tensor storage in place, which is not allowed for detach()'d
136
+ # Tensors.
137
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
138
+ output_tensors = ctx.run_function(*shallow_copies)
139
+ input_grads = torch.autograd.grad(
140
+ output_tensors,
141
+ ctx.input_tensors + ctx.input_params,
142
+ output_grads,
143
+ allow_unused=True,
144
+ )
145
+ del ctx.input_tensors
146
+ del ctx.input_params
147
+ del output_tensors
148
+ return (None, None) + input_grads
149
+
150
+
151
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
152
+ """
153
+ Create sinusoidal timestep embeddings.
154
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
155
+ These may be fractional.
156
+ :param dim: the dimension of the output.
157
+ :param max_period: controls the minimum frequency of the embeddings.
158
+ :return: an [N x dim] Tensor of positional embeddings.
159
+ """
160
+ if not repeat_only:
161
+ half = dim // 2
162
+ freqs = torch.exp(
163
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
164
+ ).to(device=timesteps.device)
165
+ args = timesteps[:, None].float() * freqs[None]
166
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
167
+ if dim % 2:
168
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
169
+ else:
170
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
171
+ return embedding
172
+
173
+
174
+ def zero_module(module):
175
+ """
176
+ Zero out the parameters of a module and return it.
177
+ """
178
+ for p in module.parameters():
179
+ p.detach().zero_()
180
+ return module
181
+
182
+
183
+ def scale_module(module, scale):
184
+ """
185
+ Scale the parameters of a module and return it.
186
+ """
187
+ for p in module.parameters():
188
+ p.detach().mul_(scale)
189
+ return module
190
+
191
+
192
+ def mean_flat(tensor):
193
+ """
194
+ Take the mean over all non-batch dimensions.
195
+ """
196
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
197
+
198
+
199
+ def normalization(channels):
200
+ """
201
+ Make a standard normalization layer.
202
+ :param channels: number of input channels.
203
+ :return: an nn.Module for normalization.
204
+ """
205
+ return GroupNorm32(32, channels)
206
+
207
+
208
+ # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
209
+ class SiLU(nn.Module):
210
+ def forward(self, x):
211
+ return x * torch.sigmoid(x)
212
+
213
+
214
+ class GroupNorm32(nn.GroupNorm):
215
+ def forward(self, x):
216
+ return super().forward(x.float()).type(x.dtype)
217
+
218
+ def conv_nd(dims, *args, **kwargs):
219
+ """
220
+ Create a 1D, 2D, or 3D convolution module.
221
+ """
222
+ if dims == 1:
223
+ return nn.Conv1d(*args, **kwargs)
224
+ elif dims == 2:
225
+ return nn.Conv2d(*args, **kwargs)
226
+ elif dims == 3:
227
+ return nn.Conv3d(*args, **kwargs)
228
+ raise ValueError(f"unsupported dimensions: {dims}")
229
+
230
+
231
+ def linear(*args, **kwargs):
232
+ """
233
+ Create a linear module.
234
+ """
235
+ return nn.Linear(*args, **kwargs)
236
+
237
+
238
+ def avg_pool_nd(dims, *args, **kwargs):
239
+ """
240
+ Create a 1D, 2D, or 3D average pooling module.
241
+ """
242
+ if dims == 1:
243
+ return nn.AvgPool1d(*args, **kwargs)
244
+ elif dims == 2:
245
+ return nn.AvgPool2d(*args, **kwargs)
246
+ elif dims == 3:
247
+ return nn.AvgPool3d(*args, **kwargs)
248
+ raise ValueError(f"unsupported dimensions: {dims}")
249
+
250
+
251
+ class HybridConditioner(nn.Module):
252
+
253
+ def __init__(self, c_concat_config, c_crossattn_config):
254
+ super().__init__()
255
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
256
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
257
+
258
+ def forward(self, c_concat, c_crossattn):
259
+ c_concat = self.concat_conditioner(c_concat)
260
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
261
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
262
+
263
+
264
+ def noise_like(shape, device, repeat=False):
265
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
266
+ noise = lambda: torch.randn(shape, device=device)
267
+ return repeat_noise() if repeat else noise()
ldm/modules/discriminator/__pycache__/model.cpython-38.pyc ADDED
Binary file (7.56 kB). View file