File size: 1,819 Bytes
8e0affa
5748770
0da2675
 
 
20b6df0
0da2675
 
20b6df0
0da2675
20b6df0
8916695
0da2675
20b6df0
8916695
0da2675
 
 
 
 
fb4f8c6
8e0affa
20b6df0
8e0affa
64f001b
8e0affa
5748770
 
 
 
 
 
 
 
 
 
20b6df0
 
 
fb4f8c6
36c9b26
5748770
 
0b1a1c5
 
 
0da2675
8497bb0
d662828
 
 
 
bd62b5b
20b6df0
36c9b26
bd62b5b
20b6df0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import wikipedia
from transformers import pipeline
import os

# Setting to use the 0th GPU
os.environ["CUDA_VISIBLE_DEVICES"] = "0"


def summarize(text):
    # Setting to use the bart-large-cnn model for summarization
    summarizer = pipeline("summarization")

    # To use the t5-base model for summarization:
    # summarizer = pipeline("summarization", model="t5-base", tokenizer="t5-base", framework="tf")

    summary_text = summarizer(text, max_length=100, min_length=5, do_sample=False)[0]['summary_text']
    print(f'Length of initial text: {len(text)}')
    print(f'Length of summary: {len(summary_text)}')
    print(summary_text)
    return summary_text


def greet(name):
    return "Hello " + name.orig_name + "!"


def get_ocr():
    return ''


def search_wiki(text):
    return wikipedia.search(text)


def get_wiki(search_term):
    # text = wikipedia.summary(search_term)
    orig_text_len = len(search_term)
    text = summarize(search_term)
    sum_length = len(text)
    return [text, orig_text_len, sum_length]


# def inference(file):
    # get_ocr()
    # model = AutoModelForSeq2SeqLM.from_pretrained("sgugger/my-awesome-model")

out_sum_text = gr.Textbox(label='Summarized Text', lines=15)
out_orig_test_len = gr.Number(label='Original Text Length')
out_sum_text_len = gr.Number(label='Summarized Text Length')

iface = gr.Interface(fn=get_wiki,
                     inputs=gr.Textbox(lines=50, placeholder="Paste article here....", label='Article to Summarize'),
                     outputs=[out_sum_text, out_orig_test_len, out_sum_text_len],
                     title='Article Summary',
                     description='Paste in an article and it will be summarized.'
                     )
iface.launch()  # To create a public link, set `share=True` in `launch()`.