Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,37 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def greet(name):
|
4 |
return "Hello " + name + "!!"
|
5 |
|
6 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
iface.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
|
4 |
+
# Function to load your model (adjust the path and method if needed)
|
5 |
+
def load_model():
|
6 |
+
# This path is relative to the root of your Hugging Face Space
|
7 |
+
model_path = "./en-hate-speech-detection-3label"
|
8 |
+
model = joblib.load(model_path)
|
9 |
+
return model
|
10 |
+
|
11 |
+
# Function to predict hate speech from text input
|
12 |
+
def predict_hate_speech(text):
|
13 |
+
model = load_model() # Load your model
|
14 |
+
prediction = model.predict([text])
|
15 |
+
# Assuming your model outputs integers representing classes, you might want to convert
|
16 |
+
# these to more readable labels. Adjust these labels according to your model's output.
|
17 |
+
labels = {0: 'Neutral or Ambiguous', 1: 'Not Hate', 2: 'Offensive or Hate Speech'}
|
18 |
+
return labels[prediction[0]]
|
19 |
+
|
20 |
+
# Adjusted Gradio interface to take text input and output model predictions
|
21 |
+
iface = gr.Interface(fn=predict_hate_speech,
|
22 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter Text Here..."),
|
23 |
+
outputs="text",
|
24 |
+
description="Detects hate speech in text. Outputs 'No Hate Speech', 'Offensive Language', or 'Hate Speech'.")
|
25 |
+
iface.launch()
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
"""
|
30 |
+
import gradio as gr
|
31 |
|
32 |
def greet(name):
|
33 |
return "Hello " + name + "!!"
|
34 |
|
35 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
36 |
iface.launch()
|
37 |
+
"""
|