Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,50 @@
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
from unsloth import FastLanguageModel
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
# Explicitly set the device to CPU
|
8 |
device = torch.device('cpu')
|
9 |
|
10 |
-
# Load model
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
|
|
|
|
21 |
def generate_text(prompt):
|
22 |
inputs = tokenizer(prompt, return_tensors="pt")
|
23 |
inputs = inputs.to(device) # Move inputs to CPU
|
24 |
with torch.no_grad():
|
25 |
outputs = model.generate(inputs['input_ids'], max_length=200)
|
26 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
import streamlit as st
|
4 |
+
from transformers import AutoTokenizer
|
5 |
from unsloth import FastLanguageModel
|
6 |
|
7 |
+
# Disable CUDA and force CPU
|
8 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
|
|
|
|
9 |
device = torch.device('cpu')
|
10 |
|
11 |
+
# Load the model and tokenizer
|
12 |
+
model_name = "your-username/Indian_law_500Epochs" # Replace with your actual model path
|
13 |
+
|
14 |
+
@st.cache_resource
|
15 |
+
def load_model():
|
16 |
+
# Load the tokenizer
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
|
19 |
+
# Load the model without GPU-specific settings
|
20 |
+
model = FastLanguageModel.from_pretrained(
|
21 |
+
model_name=model_name,
|
22 |
+
max_seq_length=2048,
|
23 |
+
load_in_4bit=False, # Disable 4-bit quantization for CPU
|
24 |
+
dtype=torch.float32, # Use float32 for CPU
|
25 |
+
)
|
26 |
+
# Move model to CPU
|
27 |
+
model = model.to(device)
|
28 |
|
29 |
+
return model, tokenizer
|
30 |
|
31 |
+
model, tokenizer = load_model()
|
32 |
+
|
33 |
+
# Inference function
|
34 |
def generate_text(prompt):
|
35 |
inputs = tokenizer(prompt, return_tensors="pt")
|
36 |
inputs = inputs.to(device) # Move inputs to CPU
|
37 |
with torch.no_grad():
|
38 |
outputs = model.generate(inputs['input_ids'], max_length=200)
|
39 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
+
|
41 |
+
# Streamlit UI
|
42 |
+
st.title("Indian Law Fine-Tuned Model Inference")
|
43 |
+
prompt = st.text_area("Enter your prompt:")
|
44 |
+
|
45 |
+
if st.button("Generate Response"):
|
46 |
+
if prompt:
|
47 |
+
response = generate_text(prompt)
|
48 |
+
st.write(response)
|
49 |
+
else:
|
50 |
+
st.write("Please enter a prompt!")
|