Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 11,939 Bytes
f766ce9 8a1daf9 f766ce9 36c5a0c f766ce9 df659d0 f766ce9 77ded94 a0c2cea 8e1f9af 943fef8 1ac2307 943fef8 f766ce9 df659d0 e089630 f766ce9 1a2dba5 8a1daf9 32ebf18 8a1daf9 32ebf18 8a1daf9 f30cbcc 8a1daf9 4959887 ee1f0b7 af8395f 77ded94 2edd122 f30cbcc ee1f0b7 77ded94 f766ce9 1ac2307 5808d8f 77ded94 5808d8f 77ded94 f30cbcc 77ded94 f30cbcc 77ded94 f766ce9 8ec7973 f766ce9 32ebf18 2c23c13 1ac2307 f766ce9 1ac2307 32ebf18 1ac2307 9002757 1ac2307 9002757 32ebf18 8ec7973 1ac2307 e8879cc f766ce9 1ac2307 e8879cc 1ac2307 af8395f 1ac2307 77ded94 1ac2307 f766ce9 1ac2307 f766ce9 1ac2307 5808d8f 943fef8 3bab3e9 943fef8 3bab3e9 5808d8f af8395f 5808d8f f30cbcc 2c23c13 1ac2307 f30cbcc 1ac2307 32ebf18 1ac2307 9002757 1ac2307 f30cbcc 32ebf18 1ac2307 f30cbcc 1ac2307 f30cbcc 1ac2307 f30cbcc ee1f0b7 1ac2307 77ded94 1ac2307 f30cbcc 943fef8 1ac2307 f30cbcc 1ac2307 f30cbcc 943fef8 3bab3e9 f30cbcc ee1f0b7 77ded94 f30cbcc 943fef8 f30cbcc 8ec7973 36c5a0c a30a228 f000c74 a30a228 f000c74 240d9ce 4cf5eb9 240d9ce 4cf5eb9 240d9ce 69a9e46 4a6f9cd d00fb74 2c777fc 36c5a0c d00fb74 9400714 d00fb74 2c777fc 4a6f9cd 9f44d20 4a6f9cd d00fb74 240d9ce d00fb74 9400714 4a6f9cd 36c5a0c 8a1daf9 f766ce9 57ca843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
INTRODUCTION_TEXT,
BENCHMARKS_TEXT,
TITLE,
EVALUATION_QUEUE_TEXT
)
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, METRIC_LIST, \
DEFAULT_METRIC
from src.display.css_html_js import custom_css
from src.display.utils import COL_NAME_IS_ANONYMOUS, COL_NAME_REVISION, COL_NAME_TIMESTAMP
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
from src.read_evals import get_raw_eval_results, get_leaderboard_df
from src.utils import update_metric, upload_file, get_default_cols, submit_results
from src.display.gradio_formatting import get_version_dropdown, get_search_bar, get_reranking_dropdown, get_noreranker_button, get_metric_dropdown, get_domain_dropdown, get_language_dropdown, get_anonymous_checkbox, get_revision_and_ts_checkbox, get_leaderboard_table
from src.display.gradio_listener import set_listeners
def restart_space():
API.restart_space(repo_id=REPO_ID)
try:
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
token=TOKEN
)
except Exception as e:
print(f'failed to download')
restart_space()
raw_data = get_raw_eval_results(f"{EVAL_RESULTS_PATH}/AIR-Bench_24.04")
original_df_qa = get_leaderboard_df(
raw_data, task='qa', metric=DEFAULT_METRIC)
original_df_long_doc = get_leaderboard_df(
raw_data, task='long-doc', metric=DEFAULT_METRIC)
print(f'raw data: {len(raw_data)}')
print(f'QA data loaded: {original_df_qa.shape}')
print(f'Long-Doc data loaded: {len(original_df_long_doc)}')
leaderboard_df_qa = original_df_qa.copy()
# leaderboard_df_qa = leaderboard_df_qa[has_no_nan_values(df, _benchmark_cols)]
shown_columns_qa, types_qa = get_default_cols(
'qa', leaderboard_df_qa.columns, add_fix_cols=True)
leaderboard_df_qa = leaderboard_df_qa[~leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa]
leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
leaderboard_df_long_doc = original_df_long_doc.copy()
shown_columns_long_doc, types_long_doc = get_default_cols(
'long-doc', leaderboard_df_long_doc.columns, add_fix_cols=True)
leaderboard_df_long_doc = leaderboard_df_long_doc[~leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]][shown_columns_long_doc]
leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
# select reranking model
reranking_models = sorted(list(frozenset([eval_result.reranking_model for eval_result in raw_data])))
def update_metric_qa(
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp,
):
return update_metric(raw_data, 'qa', metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
def update_metric_long_doc(
metric: str,
domains: list,
langs: list,
reranking_model: list,
query: str,
show_anonymous: bool,
show_revision_and_timestamp,
):
return update_metric(raw_data, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("QA", elem_id="qa-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
# search retrieval models
with gr.Row():
selected_version = get_version_dropdown()
with gr.Row():
search_bar = get_search_bar()
with gr.Row():
selected_rerankings = get_reranking_dropdown(reranking_models)
with gr.Row():
select_noreranker_only_btn = get_noreranker_button()
with gr.Column(min_width=320):
# select the metric
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC)
# select domain
with gr.Row():
selected_domains = get_domain_dropdown(DOMAIN_COLS_QA, DOMAIN_COLS_QA)
# select language
with gr.Row():
selected_langs = get_language_dropdown(LANG_COLS_QA, LANG_COLS_QA)
with gr.Row():
show_anonymous = get_anonymous_checkbox()
with gr.Row():
show_revision_and_timestamp = get_revision_and_ts_checkbox()
leaderboard_table = get_leaderboard_table(leaderboard_df_qa, types_qa)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = get_leaderboard_table(original_df_qa, types_qa, visible=False)
set_listeners(
"qa",
leaderboard_table,
hidden_leaderboard_table_for_search,
search_bar,
select_noreranker_only_btn,
selected_domains,
selected_langs,
selected_rerankings,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_qa,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
show_anonymous,
],
leaderboard_table,
queue=True
)
with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1):
with gr.Row():
with gr.Column():
with gr.Row():
selected_version = get_version_dropdown()
with gr.Row():
search_bar = get_search_bar()
# select reranking model
with gr.Row():
selected_rerankings = get_reranking_dropdown(reranking_models)
with gr.Row():
select_noreranker_only_btn = get_noreranker_button()
with gr.Column(min_width=320):
# select the metric
with gr.Row():
selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC)
# select domain
with gr.Row():
selected_domains = get_domain_dropdown(DOMAIN_COLS_LONG_DOC, DOMAIN_COLS_LONG_DOC)
# select language
with gr.Row():
selected_langs = get_language_dropdown(
LANG_COLS_LONG_DOC, LANG_COLS_LONG_DOC
)
with gr.Row():
show_anonymous = get_anonymous_checkbox()
with gr.Row():
show_revision_and_timestamp = get_revision_and_ts_checkbox()
leaderboard_table = get_leaderboard_table(
leaderboard_df_long_doc, types_long_doc
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search =get_leaderboard_table(
original_df_long_doc, types_long_doc, visible=False
)
set_listeners(
"long-doc",
leaderboard_table,
hidden_leaderboard_table_for_search,
search_bar,
select_noreranker_only_btn,
selected_domains,
selected_langs,
selected_rerankings,
show_anonymous,
show_revision_and_timestamp,
)
# set metric listener
selected_metric.change(
update_metric_long_doc,
[
selected_metric,
selected_domains,
selected_langs,
selected_rerankings,
search_bar,
show_anonymous,
show_revision_and_timestamp
],
leaderboard_table,
queue=True
)
with gr.TabItem("🚀Submit here!", elem_id="submit-tab-table", id=2):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("## ✉️Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name = gr.Textbox(label="Retrieval Method name")
with gr.Column():
model_url = gr.Textbox(label="Retrieval Method URL")
with gr.Row():
with gr.Column():
reranking_model_name = gr.Textbox(
label="Reranking Model name",
info="Optional",
value="NoReranker"
)
with gr.Column():
reranking_model_url = gr.Textbox(
label="Reranking Model URL",
info="Optional",
value=""
)
with gr.Row():
with gr.Column():
benchmark_version = gr.Dropdown(
["AIR-Bench_24.04", ],
value="AIR-Bench_24.04",
interactive=True,
label="AIR-Bench Version")
with gr.Row():
upload_button = gr.UploadButton("Click to upload search results", file_count="single")
with gr.Row():
file_output = gr.File()
with gr.Row():
is_anonymous = gr.Checkbox(
label="Nope. I want to submit anonymously 🥷",
value=False,
info="Do you want to shown on the leaderboard by default?")
with gr.Row():
submit_button = gr.Button("Submit")
with gr.Row():
submission_result = gr.Markdown()
upload_button.upload(
upload_file,
[
upload_button,
],
file_output)
submit_button.click(
submit_results,
[
file_output,
model_name,
model_url,
reranking_model_name,
reranking_model_url,
benchmark_version,
is_anonymous
],
submission_result,
show_progress="hidden"
)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|