Spaces:
AIR-Bench
/
Running on CPU Upgrade

File size: 11,939 Bytes
f766ce9
 
 
 
 
 
8a1daf9
f766ce9
36c5a0c
f766ce9
df659d0
 
f766ce9
77ded94
a0c2cea
8e1f9af
943fef8
1ac2307
943fef8
f766ce9
 
 
 
df659d0
e089630
 
 
 
 
 
 
 
f766ce9
1a2dba5
8a1daf9
 
32ebf18
8a1daf9
32ebf18
8a1daf9
f30cbcc
 
 
8a1daf9
4959887
ee1f0b7
 
af8395f
77ded94
2edd122
f30cbcc
ee1f0b7
 
 
77ded94
f766ce9
1ac2307
 
 
5808d8f
 
 
 
 
 
 
77ded94
 
5808d8f
77ded94
f30cbcc
 
 
 
 
 
 
77ded94
 
f30cbcc
77ded94
f766ce9
 
 
 
 
 
 
 
8ec7973
f766ce9
 
32ebf18
2c23c13
1ac2307
f766ce9
1ac2307
32ebf18
1ac2307
9002757
1ac2307
9002757
32ebf18
8ec7973
1ac2307
e8879cc
f766ce9
1ac2307
e8879cc
 
1ac2307
af8395f
1ac2307
77ded94
1ac2307
f766ce9
1ac2307
 
f766ce9
 
1ac2307
5808d8f
943fef8
 
3bab3e9
943fef8
 
 
 
 
 
 
 
3bab3e9
 
5808d8f
 
 
 
 
 
 
 
 
af8395f
5808d8f
 
 
 
 
f30cbcc
 
 
2c23c13
1ac2307
f30cbcc
1ac2307
32ebf18
 
1ac2307
9002757
1ac2307
f30cbcc
32ebf18
 
1ac2307
f30cbcc
 
1ac2307
f30cbcc
 
1ac2307
 
f30cbcc
ee1f0b7
1ac2307
77ded94
1ac2307
f30cbcc
943fef8
1ac2307
f30cbcc
 
 
1ac2307
 
f30cbcc
 
943fef8
 
 
 
 
 
 
 
 
 
 
3bab3e9
 
f30cbcc
 
 
 
 
 
 
 
 
ee1f0b7
77ded94
f30cbcc
943fef8
f30cbcc
 
8ec7973
36c5a0c
 
 
 
 
 
a30a228
 
f000c74
a30a228
f000c74
240d9ce
4cf5eb9
240d9ce
 
 
 
 
4cf5eb9
240d9ce
 
 
 
 
 
69a9e46
 
 
 
 
 
4a6f9cd
d00fb74
2c777fc
36c5a0c
d00fb74
9400714
d00fb74
 
 
2c777fc
4a6f9cd
 
 
9f44d20
 
 
 
 
 
4a6f9cd
 
 
 
 
d00fb74
240d9ce
 
d00fb74
9400714
4a6f9cd
 
 
 
36c5a0c
8a1daf9
 
f766ce9
 
 
 
57ca843
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    INTRODUCTION_TEXT,
    BENCHMARKS_TEXT,
    TITLE,
    EVALUATION_QUEUE_TEXT
)
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, METRIC_LIST, \
    DEFAULT_METRIC
from src.display.css_html_js import custom_css
from src.display.utils import COL_NAME_IS_ANONYMOUS, COL_NAME_REVISION, COL_NAME_TIMESTAMP
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
from src.read_evals import get_raw_eval_results, get_leaderboard_df
from src.utils import update_metric, upload_file, get_default_cols, submit_results
from src.display.gradio_formatting import get_version_dropdown, get_search_bar, get_reranking_dropdown, get_noreranker_button, get_metric_dropdown, get_domain_dropdown, get_language_dropdown, get_anonymous_checkbox, get_revision_and_ts_checkbox, get_leaderboard_table
from src.display.gradio_listener import set_listeners

def restart_space():
    API.restart_space(repo_id=REPO_ID)


try:
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
        token=TOKEN
    )
except Exception as e:
    print(f'failed to download')
    restart_space()

raw_data = get_raw_eval_results(f"{EVAL_RESULTS_PATH}/AIR-Bench_24.04")

original_df_qa = get_leaderboard_df(
    raw_data, task='qa', metric=DEFAULT_METRIC)
original_df_long_doc = get_leaderboard_df(
    raw_data, task='long-doc', metric=DEFAULT_METRIC)
print(f'raw data: {len(raw_data)}')
print(f'QA data loaded: {original_df_qa.shape}')
print(f'Long-Doc data loaded: {len(original_df_long_doc)}')

leaderboard_df_qa = original_df_qa.copy()
# leaderboard_df_qa = leaderboard_df_qa[has_no_nan_values(df, _benchmark_cols)]
shown_columns_qa, types_qa = get_default_cols(
    'qa', leaderboard_df_qa.columns, add_fix_cols=True)
leaderboard_df_qa = leaderboard_df_qa[~leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa]
leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)

leaderboard_df_long_doc = original_df_long_doc.copy()
shown_columns_long_doc, types_long_doc = get_default_cols(
    'long-doc', leaderboard_df_long_doc.columns, add_fix_cols=True)
leaderboard_df_long_doc = leaderboard_df_long_doc[~leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]][shown_columns_long_doc]
leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)

# select reranking model
reranking_models = sorted(list(frozenset([eval_result.reranking_model for eval_result in raw_data])))


def update_metric_qa(
        metric: str,
        domains: list,
        langs: list,
        reranking_model: list,
        query: str,
        show_anonymous: bool,
        show_revision_and_timestamp,
):
    return update_metric(raw_data, 'qa', metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)

def update_metric_long_doc(
        metric: str,
        domains: list,
        langs: list,
        reranking_model: list,
        query: str,
        show_anonymous: bool,
        show_revision_and_timestamp,
):
    return update_metric(raw_data, "long-doc", metric, domains, langs, reranking_model, query, show_anonymous, show_revision_and_timestamp)


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("QA", elem_id="qa-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    # search retrieval models
                    with gr.Row():
                        selected_version = get_version_dropdown()
                    with gr.Row():
                        search_bar = get_search_bar()
                    with gr.Row():
                        selected_rerankings = get_reranking_dropdown(reranking_models)
                    with gr.Row():
                        select_noreranker_only_btn = get_noreranker_button()

                with gr.Column(min_width=320):
                    # select the metric
                    selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC)
                    # select domain
                    with gr.Row():
                        selected_domains = get_domain_dropdown(DOMAIN_COLS_QA, DOMAIN_COLS_QA)
                    # select language
                    with gr.Row():
                        selected_langs = get_language_dropdown(LANG_COLS_QA, LANG_COLS_QA)
                    with gr.Row():
                        show_anonymous = get_anonymous_checkbox()
                    with gr.Row():
                        show_revision_and_timestamp = get_revision_and_ts_checkbox()


            leaderboard_table = get_leaderboard_table(leaderboard_df_qa, types_qa)

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = get_leaderboard_table(original_df_qa, types_qa, visible=False)

            set_listeners(
                "qa",
                leaderboard_table,
                hidden_leaderboard_table_for_search,
                search_bar,
                select_noreranker_only_btn,
                selected_domains,
                selected_langs,
                selected_rerankings,
                show_anonymous,
                show_revision_and_timestamp,
            )

            # set metric listener
            selected_metric.change(
                update_metric_qa,
                [
                    selected_metric,
                    selected_domains,
                    selected_langs,
                    selected_rerankings,
                    search_bar,
                    show_anonymous,
                ],
                leaderboard_table,
                queue=True
            )

        with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        selected_version = get_version_dropdown()
                    with gr.Row():
                        search_bar = get_search_bar()
                    # select reranking model
                    with gr.Row():
                        selected_rerankings = get_reranking_dropdown(reranking_models)
                    with gr.Row():
                        select_noreranker_only_btn = get_noreranker_button()
                with gr.Column(min_width=320):
                    # select the metric
                    with gr.Row():
                        selected_metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC)
                    # select domain
                    with gr.Row():
                        selected_domains = get_domain_dropdown(DOMAIN_COLS_LONG_DOC, DOMAIN_COLS_LONG_DOC)
                    # select language
                    with gr.Row():
                        selected_langs = get_language_dropdown(
                            LANG_COLS_LONG_DOC, LANG_COLS_LONG_DOC
                        )
                    with gr.Row():
                        show_anonymous = get_anonymous_checkbox()
                    with gr.Row():
                        show_revision_and_timestamp = get_revision_and_ts_checkbox()

            leaderboard_table = get_leaderboard_table(
                leaderboard_df_long_doc, types_long_doc
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search =get_leaderboard_table(
                original_df_long_doc, types_long_doc, visible=False
            )

            set_listeners(
                "long-doc",
                leaderboard_table,
                hidden_leaderboard_table_for_search,
                search_bar,
                select_noreranker_only_btn,
                selected_domains,
                selected_langs,
                selected_rerankings,
                show_anonymous,
                show_revision_and_timestamp,
            )

            # set metric listener
            selected_metric.change(
                update_metric_long_doc,
                [
                    selected_metric,
                    selected_domains,
                    selected_langs,
                    selected_rerankings,
                    search_bar,
                    show_anonymous,
                    show_revision_and_timestamp
                ],
                leaderboard_table,
                queue=True
            )

        with gr.TabItem("🚀Submit here!", elem_id="submit-tab-table", id=2):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
                with gr.Row():
                    gr.Markdown("## ✉️Submit your model here!", elem_classes="markdown-text")
                with gr.Row():
                    with gr.Column():
                        model_name = gr.Textbox(label="Retrieval Method name")
                    with gr.Column():
                        model_url = gr.Textbox(label="Retrieval Method URL")
                with gr.Row():
                    with gr.Column():
                        reranking_model_name = gr.Textbox(
                            label="Reranking Model name",
                            info="Optional",
                            value="NoReranker"
                        )
                    with gr.Column():
                        reranking_model_url = gr.Textbox(
                            label="Reranking Model URL",
                            info="Optional",
                            value=""
                        )
                with gr.Row():
                    with gr.Column():
                        benchmark_version = gr.Dropdown(
                            ["AIR-Bench_24.04", ],
                            value="AIR-Bench_24.04",
                            interactive=True,
                            label="AIR-Bench Version")
                with gr.Row():
                    upload_button = gr.UploadButton("Click to upload search results", file_count="single")
                with gr.Row():
                    file_output = gr.File()
                with gr.Row():
                    is_anonymous = gr.Checkbox(
                        label="Nope. I want to submit anonymously 🥷",
                        value=False,
                        info="Do you want to shown on the leaderboard by default?")
                with gr.Row():
                    submit_button = gr.Button("Submit")
                with gr.Row():
                    submission_result = gr.Markdown()
                upload_button.upload(
                    upload_file,
                    [
                        upload_button,
                    ],
                    file_output)
                submit_button.click(
                    submit_results,
                    [
                        file_output,
                        model_name,
                        model_url,
                        reranking_model_name,
                        reranking_model_url,
                        benchmark_version,
                        is_anonymous
                    ],
                    submission_result,
                    show_progress="hidden"
                )

        with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text")

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()