Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import pandas as pd | |
from src.display.utils import AutoEvalColumnQA, COLS | |
from src.benchmarks import BENCHMARK_COLS_QA, BenchmarksQA | |
def filter_models(df: pd.DataFrame, reranking_query: list) -> pd.DataFrame: | |
return df.loc[df["Reranking Model"].isin(reranking_query)] | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[ | |
AutoEvalColumnQA.retrieval_model.name, | |
AutoEvalColumnQA.reranking_model.name, | |
] | |
) | |
return filtered_df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumnQA.retrieval_model.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, domain_query: list, language_query: list) -> pd.DataFrame: | |
always_here_cols = [ | |
AutoEvalColumnQA.retrieval_model.name, | |
AutoEvalColumnQA.reranking_model.name, | |
AutoEvalColumnQA.average.name | |
] | |
selected_cols = [] | |
for c in COLS: | |
if c not in df.columns: | |
continue | |
if c not in BENCHMARK_COLS_QA: | |
continue | |
eval_col = BenchmarksQA[c].value | |
if eval_col.domain not in domain_query: | |
continue | |
if eval_col.lang not in language_query: | |
continue | |
selected_cols.append(c) | |
# We use COLS to maintain sorting | |
filtered_df = df[always_here_cols + selected_cols] | |
filtered_df[AutoEvalColumnQA.average.name] = filtered_df[selected_cols].mean(axis=1) | |
return filtered_df | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
reranking_query: list, | |
query: str, | |
): | |
filtered_df = filter_models(hidden_df, reranking_query) | |
filtered_df = filter_queries(query, filtered_df) | |
df = select_columns(filtered_df, columns) | |
return df | |