Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from dataclasses import dataclass | |
from enum import Enum | |
def get_safe_name(name: str): | |
"""Get RFC 1123 compatible safe name""" | |
name = name.replace('-', '_') | |
return ''.join( | |
character.lower() | |
for character in name | |
if (character.isalnum() or character == '_')) | |
dataset_dict = { | |
"qa": { | |
"wiki": { | |
"en": ["wikipedia_20240101", ], | |
"zh": ["wikipedia_20240101", ] | |
}, | |
"web": { | |
"en": ["mC4", ], | |
"zh": ["mC4", ] | |
}, | |
"news": { | |
"en": ["CC-News", ], | |
"zh": ["CC-News", ] | |
}, | |
"health": { | |
"en": ["PubMedQA", ], | |
"zh": ["Huatuo-26M", ] | |
}, | |
"law": { | |
"en": ["pile-of-law", ], | |
"zh": ["flk_npc_gov_cn", ] | |
}, | |
"finance": { | |
"en": ["Reuters-Financial", ], | |
"zh": ["FinCorpus", ] | |
}, | |
"arxiv": { | |
"en": ["Arxiv", ]}, | |
}, | |
"long_doc": { | |
"arxiv": { | |
"en": ["gpt-3", "llama2", "llm-survey", "gemini"], | |
}, | |
"book": { | |
"en": [ | |
"origin-of-species_darwin", | |
"a-brief-history-of-time_stephen-hawking" | |
] | |
}, | |
"healthcare": { | |
"en": [ | |
"pubmed_100K-200K_1", | |
"pubmed_100K-200K_2", | |
"pubmed_100K-200K_3", | |
"pubmed_40K-50K_5-merged", | |
"pubmed_30K-40K_10-merged" | |
] | |
}, | |
"law": { | |
"en": [ | |
"lex_files_300K-400K", | |
"lex_files_400K-500K", | |
"lex_files_500K-600K", | |
"lex_files_600K-700K" | |
] | |
} | |
} | |
} | |
metric_list = [ | |
"ndcg_at_1", | |
"ndcg_at_3", | |
"ndcg_at_5", | |
"ndcg_at_10", | |
"ndcg_at_100", | |
"ndcg_at_1000", | |
"map_at_1", | |
"map_at_3", | |
"map_at_5", | |
"map_at_10", | |
"map_at_100", | |
"map_at_1000", | |
"recall_at_1", | |
"recall_at_3", | |
"recall_at_5", | |
"recall_at_10" | |
"recall_at_100", | |
"recall_at_1000", | |
"precision_at_1", | |
"precision_at_3", | |
"precision_at_5", | |
"precision_at_10", | |
"precision_at_100", | |
"precision_at_1000", | |
"mrr_at_1", | |
"mrr_at_3", | |
"mrr_at_5", | |
"mrr_at_10", | |
"mrr_at_100", | |
"mrr_at_1000" | |
] | |
class Benchmark: | |
name: str # [domain]_[language]_[metric], task_key in the json file, | |
metric: str # ndcg_at_1 ,metric_key in the json file | |
col_name: str # [domain]_[language], name to display in the leaderboard | |
domain: str | |
lang: str | |
task: str | |
qa_benchmark_dict = {} | |
long_doc_benchmark_dict = {} | |
for task, domain_dict in dataset_dict.items(): | |
for domain, lang_dict in domain_dict.items(): | |
for lang, dataset_list in lang_dict.items(): | |
if task == "qa": | |
benchmark_name = f"{domain}_{lang}" | |
benchmark_name = get_safe_name(benchmark_name) | |
col_name = f"{domain}_{lang}" | |
for metric in dataset_list: | |
qa_benchmark_dict[benchmark_name] = Benchmark(benchmark_name, metric, col_name, domain, lang, task) | |
elif task == "long_doc": | |
for dataset in dataset_list: | |
col_name = f"{domain}_{lang}_{dataset}" | |
for metric in metric_list: | |
benchmark_name = f"{domain}_{lang}_{dataset}_{metric}" | |
benchmark_name = get_safe_name(benchmark_name) | |
long_doc_benchmark_dict[benchmark_name] = Benchmark(benchmark_name, metric, col_name, domain, lang, task) | |
BenchmarksQA = Enum('BenchmarksQA', qa_benchmark_dict) | |
BenchmarksLongDoc = Enum('BenchmarksLongDoc', long_doc_benchmark_dict) | |
BENCHMARK_COLS_QA = [c.col_name for c in qa_benchmark_dict.values()] | |
DOMAIN_COLS_QA = list(frozenset([c.domain for c in qa_benchmark_dict.values()])) | |
LANG_COLS_QA = list(frozenset([c.lang for c in qa_benchmark_dict.values()])) | |