Spaces:
Running
Running
File size: 7,081 Bytes
c71d758 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
from pathlib import Path
import PIL
import dlib
import numpy as np
import scipy
import scipy.ndimage
import torch
from PIL import Image
from torchvision import transforms as T
from utils.drive import open_url
"""
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
author: lzhbrian (https://lzhbrian.me)
date: 2020.1.5
note: code is heavily borrowed from
https://github.com/NVlabs/ffhq-dataset
http://dlib.net/face_landmark_detection.py.html
requirements:
apt install cmake
conda install Pillow numpy scipy
pip install dlib
# download face landmark model from:
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
"""
def get_landmark(filepath, predictor):
"""get landmark with dlib
:return: np.array shape=(68, 2)
"""
detector = dlib.get_frontal_face_detector()
img = dlib.load_rgb_image(filepath)
dets = detector(img, 1)
filepath = Path(filepath)
print(f"{filepath.name}: Number of faces detected: {len(dets)}")
shapes = [predictor(img, d) for k, d in enumerate(dets)]
lms = [np.array([[tt.x, tt.y] for tt in shape.parts()]) for shape in shapes]
return lms
def get_landmark_from_tensors(tensors: list[torch.Tensor | Image.Image | np.ndarray], predictor):
detector = dlib.get_frontal_face_detector()
transform = T.ToPILImage()
images = []
lms = []
for k, tensor in enumerate(tensors):
if isinstance(tensor, torch.Tensor):
img_pil = transform(tensor)
else:
img_pil = tensor
img = np.array(img_pil)
images.append(img_pil)
dets = detector(img, 1)
if len(dets) == 0:
raise ValueError(f"No faces detected in the image {k}.")
elif len(dets) == 1:
print(f"Number of faces detected: {len(dets)}")
else:
print(f"Number of faces detected: {len(dets)}, get largest face")
# Find the largest face
dets = sorted(dets, key=lambda det: det.width() * det.height(), reverse=True)
shape = predictor(img, dets[0])
lm = np.array([[tt.x, tt.y] for tt in shape.parts()])
lms.append(lm)
return images, lms
def align_face(data, predictor=None, is_filepath=False, return_tensors=True):
"""
:param data: filepath or list torch Tensors
:return: list of PIL Images
"""
if predictor is None:
predictor_path = 'shape_predictor_68_face_landmarks.dat'
if not os.path.isfile(predictor_path):
print("Downloading Shape Predictor")
data_io = open_url("https://drive.google.com/uc?id=1huhv8PYpNNKbGCLOaYUjOgR1pY5pmbJx")
with open(predictor_path, 'wb') as f:
f.write(data_io.getbuffer())
predictor = dlib.shape_predictor(predictor_path)
if is_filepath:
lms = get_landmark(data, predictor)
else:
if not isinstance(data, list):
data = [data]
images, lms = get_landmark_from_tensors(data, predictor)
imgs = []
for num_img, lm in enumerate(lms):
lm_chin = lm[0: 17] # left-right
lm_eyebrow_left = lm[17: 22] # left-right
lm_eyebrow_right = lm[22: 27] # left-right
lm_nose = lm[27: 31] # top-down
lm_nostrils = lm[31: 36] # top-down
lm_eye_left = lm[36: 42] # left-clockwise
lm_eye_right = lm[42: 48] # left-clockwise
lm_mouth_outer = lm[48: 60] # left-clockwise
lm_mouth_inner = lm[60: 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# read image
if is_filepath:
img = PIL.Image.open(data)
else:
img = images[num_img]
output_size = 1024
# output_size = 256
transform_size = 4096
enable_padding = True
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(),
PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.LANCZOS)
# Save aligned image.
imgs.append(img)
if return_tensors:
transform = T.ToTensor()
tensors = [transform(img).clamp(0, 1) for img in imgs]
return tensors
return imgs
|