v2 / modules /text_analysis /semantic_analysis.py
AIdeaText's picture
Create semantic_analysis.py
726d44a verified
raw
history blame contribute delete
No virus
9.01 kB
#semantic_analysis.py
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter
from collections import defaultdict
# Define colors for grammatical categories
POS_COLORS = {
'ADJ': '#FFA07A', # Light Salmon
'ADP': '#98FB98', # Pale Green
'ADV': '#87CEFA', # Light Sky Blue
'AUX': '#DDA0DD', # Plum
'CCONJ': '#F0E68C', # Khaki
'DET': '#FFB6C1', # Light Pink
'INTJ': '#FF6347', # Tomato
'NOUN': '#90EE90', # Light Green
'NUM': '#FAFAD2', # Light Goldenrod Yellow
'PART': '#D3D3D3', # Light Gray
'PRON': '#FFA500', # Orange
'PROPN': '#20B2AA', # Light Sea Green
'SCONJ': '#DEB887', # Burlywood
'SYM': '#7B68EE', # Medium Slate Blue
'VERB': '#FF69B4', # Hot Pink
'X': '#A9A9A9', # Dark Gray
}
POS_TRANSLATIONS = {
'es': {
'ADJ': 'Adjetivo',
'ADP': 'Adposición',
'ADV': 'Adverbio',
'AUX': 'Auxiliar',
'CCONJ': 'Conjunción Coordinante',
'DET': 'Determinante',
'INTJ': 'Interjección',
'NOUN': 'Sustantivo',
'NUM': 'Número',
'PART': 'Partícula',
'PRON': 'Pronombre',
'PROPN': 'Nombre Propio',
'SCONJ': 'Conjunción Subordinante',
'SYM': 'Símbolo',
'VERB': 'Verbo',
'X': 'Otro',
},
'en': {
'ADJ': 'Adjective',
'ADP': 'Adposition',
'ADV': 'Adverb',
'AUX': 'Auxiliary',
'CCONJ': 'Coordinating Conjunction',
'DET': 'Determiner',
'INTJ': 'Interjection',
'NOUN': 'Noun',
'NUM': 'Number',
'PART': 'Particle',
'PRON': 'Pronoun',
'PROPN': 'Proper Noun',
'SCONJ': 'Subordinating Conjunction',
'SYM': 'Symbol',
'VERB': 'Verb',
'X': 'Other',
},
'fr': {
'ADJ': 'Adjectif',
'ADP': 'Adposition',
'ADV': 'Adverbe',
'AUX': 'Auxiliaire',
'CCONJ': 'Conjonction de Coordination',
'DET': 'Déterminant',
'INTJ': 'Interjection',
'NOUN': 'Nom',
'NUM': 'Nombre',
'PART': 'Particule',
'PRON': 'Pronom',
'PROPN': 'Nom Propre',
'SCONJ': 'Conjonction de Subordination',
'SYM': 'Symbole',
'VERB': 'Verbe',
'X': 'Autre',
}
}
########################################################################################################################################
# Definimos las etiquetas y colores para cada idioma
ENTITY_LABELS = {
'es': {
"Personas": "lightblue",
"Conceptos": "lightgreen",
"Lugares": "lightcoral",
"Fechas": "lightyellow"
},
'en': {
"People": "lightblue",
"Concepts": "lightgreen",
"Places": "lightcoral",
"Dates": "lightyellow"
},
'fr': {
"Personnes": "lightblue",
"Concepts": "lightgreen",
"Lieux": "lightcoral",
"Dates": "lightyellow"
}
}
#########################################################################################################
def count_pos(doc):
return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')
#####################################################################################################################
def create_semantic_graph(doc, lang):
G = nx.Graph()
word_freq = defaultdict(int)
lemma_to_word = {}
lemma_to_pos = {}
# Count frequencies of lemmas and map lemmas to their most common word form and POS
for token in doc:
if token.pos_ in ['NOUN', 'VERB']:
lemma = token.lemma_.lower()
word_freq[lemma] += 1
if lemma not in lemma_to_word or token.text.lower() == lemma:
lemma_to_word[lemma] = token.text
lemma_to_pos[lemma] = token.pos_
# Get top 20 most frequent lemmas
top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]
# Add nodes
for lemma in top_lemmas:
word = lemma_to_word[lemma]
G.add_node(word, pos=lemma_to_pos[lemma])
# Add edges
for token in doc:
if token.lemma_.lower() in top_lemmas:
if token.head.lemma_.lower() in top_lemmas:
source = lemma_to_word[token.lemma_.lower()]
target = lemma_to_word[token.head.lemma_.lower()]
if source != target: # Avoid self-loops
G.add_edge(source, target, label=token.dep_)
return G, word_freq
############################################################################################################################################
def visualize_semantic_relations(doc, lang):
G = nx.Graph()
word_freq = defaultdict(int)
lemma_to_word = {}
lemma_to_pos = {}
# Count frequencies of lemmas and map lemmas to their most common word form and POS
for token in doc:
if token.pos_ in ['NOUN', 'VERB']:
lemma = token.lemma_.lower()
word_freq[lemma] += 1
if lemma not in lemma_to_word or token.text.lower() == lemma:
lemma_to_word[lemma] = token.text
lemma_to_pos[lemma] = token.pos_
# Get top 20 most frequent lemmas
top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]
# Add nodes
for lemma in top_lemmas:
word = lemma_to_word[lemma]
G.add_node(word, pos=lemma_to_pos[lemma])
# Add edges
for token in doc:
if token.lemma_.lower() in top_lemmas:
if token.head.lemma_.lower() in top_lemmas:
source = lemma_to_word[token.lemma_.lower()]
target = lemma_to_word[token.head.lemma_.lower()]
if source != target: # Avoid self-loops
G.add_edge(source, target, label=token.dep_)
fig, ax = plt.subplots(figsize=(36, 27))
pos = nx.spring_layout(G, k=0.7, iterations=50)
node_colors = [POS_COLORS.get(G.nodes[node]['pos'], '#CCCCCC') for node in G.nodes()]
nx.draw(G, pos, node_color=node_colors, with_labels=True,
node_size=10000,
font_size=16,
font_weight='bold',
arrows=True,
arrowsize=30,
width=3,
edge_color='gray',
ax=ax)
edge_labels = nx.get_edge_attributes(G, 'label')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14, ax=ax)
title = {
'es': "Relaciones Semánticas Relevantes",
'en': "Relevant Semantic Relations",
'fr': "Relations Sémantiques Pertinentes"
}
ax.set_title(title[lang], fontsize=24, fontweight='bold')
ax.axis('off')
legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none',
label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
for pos in ['NOUN', 'VERB']]
ax.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=16)
return fig
############################################################################################################################################
def identify_and_contextualize_entities(doc, lang):
entities = []
for ent in doc.ents:
# Obtener el contexto (3 palabras antes y después de la entidad)
start = max(0, ent.start - 3)
end = min(len(doc), ent.end + 3)
context = doc[start:end].text
entities.append({
'text': ent.text,
'label': ent.label_,
'start': ent.start,
'end': ent.end,
'context': context
})
# Identificar conceptos clave (usando sustantivos y verbos más frecuentes)
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop])
key_concepts = word_freq.most_common(10) # Top 10 conceptos clave
return entities, key_concepts
############################################################################################################################################
def perform_semantic_analysis(text, nlp, lang):
doc = nlp(text)
# Identificar entidades y conceptos clave
entities, key_concepts = identify_and_contextualize_entities(doc, lang)
# Visualizar relaciones semánticas
relations_graph = visualize_semantic_relations(doc, lang)
# Imprimir entidades para depuración
print(f"Entidades encontradas ({lang}):")
for ent in doc.ents:
print(f"{ent.text} - {ent.label_}")
relations_graph = visualize_semantic_relations(doc, lang)
return {
'entities': entities,
'key_concepts': key_concepts,
'relations_graph': relations_graph
}
__all__ = ['visualize_semantic_relations', 'create_semantic_graph', 'POS_COLORS', 'POS_TRANSLATIONS', 'identify_and_contextualize_entities']