File size: 41,149 Bytes
f4ccc2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
<!-- livebook:{"persist_outputs":true} -->

# Cleaned vs Dirty V2

```elixir
Mix.install(
  [
    {:stb_image, "~> 0.5.2"},
    {:axon, "~> 0.5"},
    {:polaris, "~> 0.1"},
    {:exla, "~> 0.5"},
    {:explorer, "~> 0.8.0"},
    {:nx, "~> 0.5"},
    {:kino_ripmd, github: "clm-a/kino_ripmd"},
    {:kino_explorer, "~> 0.1.0"},
    {:kino_vega_lite, "~> 0.1.0"},
    {:kino, "~> 0.10.0"},
    {:csv, "~> 3.2"}
  ],
  config: [
    nx: [
      default_backend: EXLA.Backend,
      default_defn_options: [compiler: EXLA]
    ],
    exla: [
      default_client: :cuda,
      clients: [
        cuda: [platform: :cuda],
        rocm: [platform: :rocm],
        tpu: [platform: :tpu],
        host: [platform: :host]
      ],
      memory_fraction: 0.9,
      preallocate: false
    ]
  ],
  system_env: [
    XLA_TARGET: "cuda120"
  ]
)
```

## Goal

_Hi! It is boring to wash the dishes. Luckily, half of them are already clean. Train a classifier to determine clean ones to save time for the new machine learning course ;)_

_It is a few shot learning competition. We have a dataset of 20 clean and 20 dirty plates in train and hundreds of plates in test. Good luck!_

Igor.Slinko. (2019). Cleaned vs Dirty V2. Kaggle. https://kaggle.com/competitions/platesv2

## Setting up the model

```elixir
alias Axon.Loop.State
import Nx.Defn

directories =
  "/home/le-moski/Documents/FEFU/7S/AI/lab1-dirtyplates/platesv2/plates/train/{cleaned,dirty}/*.jpg"

batch_size = 8
image_channels = 3
image_w = 256
image_h = 256
channel_value_max = 255

cleaned_class = Nx.tensor([1, 0], type: {:u, 8})
dirty_class = Nx.tensor([0, 1], type: {:u, 8})
```

<!-- livebook:{"output":true} -->

```
#Nx.Tensor<
  u8[2]
  EXLA.Backend<cuda:0, 0.463371035.4063887383.206028>
  [0, 1]
>
```

```elixir
parse_img = fn filename ->
  class =
    if Path.dirname(filename)
       |> String.split("/")
       |> List.last() == "cleaned" do
      cleaned_class
    else
      dirty_class
    end

  {:ok, img} = StbImage.read_file(filename)

  img = StbImage.resize(img, image_h, image_w)

  {StbImage.to_nx(img), class}
end
```

<!-- livebook:{"output":true} -->

```
#Function<42.39164016/1 in :erl_eval.expr/6>
```

```elixir
data =
  Path.wildcard(directories)
  |> Enum.shuffle()
  |> Stream.chunk_every(batch_size, batch_size)
  |> Task.async_stream(fn batch ->
    {imgs, classes} = batch |> Enum.map(&parse_img.(&1)) |> Enum.unzip()
    {Nx.stack(imgs), Nx.stack(classes)}
  end)
  |> Stream.map(fn {:ok, {imgs, classes}} -> {imgs |> Nx.divide(channel_value_max), classes} end)
```

<!-- livebook:{"output":true} -->

```
#Stream<[
  enum: #Function<3.112894672/2 in Task.build_stream/3>,
  funs: [#Function<50.38948127/1 in Stream.map/2>]
]>
```

```elixir
model =
  Axon.input("input", shape: {nil, image_w, image_h, image_channels})
  |> Axon.conv(64, kernel_size: {3, 3})
  |> Axon.batch_norm()
  |> Axon.relu()
  |> Axon.max_pool(kernel_size: {2, 2})
  |> Axon.conv(128, kernel_size: {3, 3})
  |> Axon.batch_norm()
  |> Axon.relu()
  |> Axon.max_pool(kernel_size: {2, 2})
  |> Axon.flatten()
  |> Axon.dense(256, activation: :relu)
  |> Axon.dropout()
  |> Axon.dense(2, activation: :softmax)
```

<!-- livebook:{"output":true} -->

```
#Axon<
  inputs: %{"input" => {nil, 256, 256, 3}}
  outputs: "softmax_0"
  nodes: 15
>
```

```elixir
optimizer = Polaris.Optimizers.adam(learning_rate: 1.0e-3)
centralized_optimizer = Polaris.Updates.compose(Polaris.Updates.centralize(), optimizer)
epochs = 4

model_state =
  model
  |> Axon.Loop.trainer(:binary_cross_entropy, centralized_optimizer, log: 1)
  |> Axon.Loop.metric(:accuracy)
  |> Axon.Loop.run(data, %{}, epochs: epochs, iterations: 30, compiler: EXLA)
```

<!-- livebook:{"output":true} -->

```

08:12:25.650 [debug] Forwarding options: [compiler: EXLA] to JIT compiler

08:12:37.790 [warning] Allocator (GPU_0_bfc) ran out of memory trying to allocate 480.50MiB (rounded to 503840768)requested by op 

08:12:37.791 [info] BFCAllocator dump for GPU_0_bfc

08:12:37.791 [info] Bin (256): 	Total Chunks: 102, Chunks in use: 102. 25.5KiB allocated for chunks. 25.5KiB in use in bin. 11.5KiB client-requested in use in bin.

08:12:37.791 [info] Bin (512): 	Total Chunks: 20, Chunks in use: 20. 10.0KiB allocated for chunks. 10.0KiB in use in bin. 10.0KiB client-requested in use in bin.

08:12:37.792 [info] Bin (1024): 	Total Chunks: 4, Chunks in use: 4. 4.0KiB allocated for chunks. 4.0KiB in use in bin. 4.0KiB client-requested in use in bin.

08:12:37.792 [info] Bin (2048): 	Total Chunks: 16, Chunks in use: 16. 44.0KiB allocated for chunks. 44.0KiB in use in bin. 43.0KiB client-requested in use in bin.

08:12:37.793 [info] Bin (4096): 	Total Chunks: 4, Chunks in use: 4. 16.0KiB allocated for chunks. 16.0KiB in use in bin. 16.0KiB client-requested in use in bin.

08:12:37.793 [info] Bin (8192): 	Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.

08:12:37.795 [info] Bin (16384): 	Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.

08:12:37.795 [info] Bin (32768): 	Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.

08:12:37.796 [info] Bin (65536): 	Total Chunks: 8, Chunks in use: 8. 624.5KiB allocated for chunks. 624.5KiB in use in bin. 576.0KiB client-requested in use in bin.

08:12:37.797 [info] Bin (131072): 	Total Chunks: 8, Chunks in use: 8. 1.20MiB allocated for chunks. 1.20MiB in use in bin. 1.12MiB client-requested in use in bin.

08:12:37.797 [info] Bin (262144): 	Total Chunks: 4, Chunks in use: 4. 1.12MiB allocated for chunks. 1.12MiB in use in bin. 1.12MiB client-requested in use in bin.

08:12:37.797 [info] Bin (524288): 	Total Chunks: 2, Chunks in use: 0. 1.54MiB allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.

08:12:37.798 [info] Bin (1048576): 	Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.

08:12:37.798 [info] Bin (2097152): 	Total Chunks: 4, Chunks in use: 1. 9.57MiB allocated for chunks. 2.50MiB in use in bin. 2.50MiB client-requested in use in bin.

08:12:37.798 [info] Bin (4194304): 	Total Chunks: 2, Chunks in use: 1. 11.25MiB allocated for chunks. 6.00MiB in use in bin. 6.00MiB client-requested in use in bin.

```

<!-- livebook:{"output":true} -->

```

08:12:37.798 [info] Bin (8388608): 	Total Chunks: 1, Chunks in use: 0. 10.49MiB allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.

08:12:37.799 [info] Bin (16777216): 	Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.

08:12:37.799 [info] Bin (33554432): 	Total Chunks: 4, Chunks in use: 4. 133.00MiB allocated for chunks. 133.00MiB in use in bin. 133.00MiB client-requested in use in bin.

08:12:37.800 [info] Bin (67108864): 	Total Chunks: 0, Chunks in use: 0. 0B allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.

08:12:37.800 [info] Bin (134217728): 	Total Chunks: 6, Chunks in use: 4. 994.80MiB allocated for chunks. 600.00MiB in use in bin. 600.00MiB client-requested in use in bin.

08:12:37.801 [info] Bin (268435456): 	Total Chunks: 2, Chunks in use: 0. 629.22MiB allocated for chunks. 0B in use in bin. 0B client-requested in use in bin.

08:12:37.801 [info] Bin for 480.50MiB was 256.00MiB, Chunk State: 

08:12:37.801 [info]   Size: 295.97MiB | Requested Size: 153.12MiB | in_use: 0 | bin_num: 20, prev:   Size: 223.5KiB | Requested Size: 144.0KiB | in_use: 1 | bin_num: -1, next:   Size: 144.0KiB | Requested Size: 144.0KiB | in_use: 1 | bin_num: -1

08:12:37.803 [info]   Size: 333.25MiB | Requested Size: 153.12MiB | in_use: 0 | bin_num: 20, prev:   Size: 33.25MiB | Requested Size: 33.25MiB | in_use: 1 | bin_num: -1

08:12:37.804 [info] Next region of size 1880004864

08:12:37.804 [info] Free  at 736310000000 of size 2575616 next 65

08:12:37.806 [info] InUse at 736310274d00 of size 256 next 1947

08:12:37.806 [info] InUse at 736310274e00 of size 73728 next 438

08:12:37.807 [info] InUse at 736310286e00 of size 73728 next 1507

08:12:37.807 [info] InUse at 736310298e00 of size 115712 next 1943

08:12:37.807 [info] InUse at 7363102b5200 of size 256 next 420

08:12:37.808 [info] Free  at 7363102b5300 of size 786688 next 238

08:12:37.808 [info] InUse at 736310375400 of size 256 next 259

08:12:37.809 [info] Free  at 736310375500 of size 10996736 next 3677

08:12:37.809 [info] InUse at 736310df2100 of size 2618880 next 1580

08:12:37.810 [info] Free  at 736311071700 of size 2671872 next 291

08:12:37.810 [info] InUse at 7363112fdc00 of size 147456 next 1912

08:12:37.810 [info] InUse at 736311321c00 of size 147456 next 386

08:12:37.811 [info] InUse at 736311345c00 of size 148736 next 39

08:12:37.811 [info] Free  at 73631136a100 of size 5500672 next 1277

08:12:37.811 [info] InUse at 7363118a9000 of size 294912 next 3916

08:12:37.811 [info] InUse at 7363118f1000 of size 294912 next 3549

08:12:37.812 [info] InUse at 736311939000 of size 294912 next 1748

08:12:37.812 [info] InUse at 736311981000 of size 294912 next 1904

08:12:37.812 [info] InUse at 7363119c9000 of size 73728 next 1575

08:12:37.812 [info] InUse at 7363119db000 of size 3584 next 1797

08:12:37.812 [info] InUse at 7363119dbe00 of size 3584 next 1919

08:12:37.813 [info] InUse at 7363119dcc00 of size 3584 next 230

08:12:37.813 [info] InUse at 7363119dda00 of size 3584 next 1730

08:12:37.813 [info] InUse at 7363119de800 of size 2048 next 1774

08:12:37.813 [info] InUse at 7363119df000 of size 2048 next 1639

08:12:37.813 [info] InUse at 7363119df800 of size 2048 next 1728

08:12:37.814 [info] InUse at 7363119e0000 of size 2048 next 1531

08:12:37.814 [info] InUse at 7363119e0800 of size 1024 next 1504

08:12:37.814 [info] InUse at 7363119e0c00 of size 1024 next 1498

08:12:37.815 [info] InUse at 7363119e1000 of size 1024 next 1636

08:12:37.815 [info] InUse at 7363119e1400 of size 1024 next 1742

08:12:37.815 [info] InUse at 7363119e1800 of size 512 next 1855

08:12:37.815 [info] InUse at 7363119e1a00 of size 512 next 2919

08:12:37.816 [info] InUse at 7363119e1c00 of size 512 next 342

08:12:37.816 [info] InUse at 7363119e1e00 of size 512 next 1903

08:12:37.816 [info] InUse at 7363119e2000 of size 512 next 3877

08:12:37.816 [info] InUse at 7363119e2200 of size 512 next 1808

08:12:37.816 [info] InUse at 7363119e2400 of size 512 next 1749

08:12:37.817 [info] InUse at 7363119e2600 of size 512 next 3830

08:12:37.817 [info] InUse at 7363119e2800 of size 512 next 1832

08:12:37.817 [info] InUse at 7363119e2a00 of size 512 next 1656

08:12:37.817 [info] InUse at 7363119e2c00 of size 512 next 1491

08:12:37.817 [info] InUse at 7363119e2e00 of size 512 next 3251

08:12:37.818 [info] InUse at 7363119e3000 of size 512 next 3922

08:12:37.818 [info] InUse at 7363119e3200 of size 512 next 3914

08:12:37.818 [info] InUse at 7363119e3400 of size 512 next 3755

08:12:37.818 [info] InUse at 7363119e3600 of size 512 next 1768

08:12:37.818 [info] InUse at 7363119e3800 of size 512 next 1488

08:12:37.819 [info] InUse at 7363119e3a00 of size 512 next 1831

08:12:37.819 [info] InUse at 7363119e3c00 of size 512 next 1689

08:12:37.819 [info] InUse at 7363119e3e00 of size 512 next 1846

08:12:37.819 [info] InUse at 7363119e4000 of size 256 next 1861

08:12:37.821 [info] InUse at 7363119e4100 of size 256 next 1708

08:12:37.821 [info] InUse at 7363119e4200 of size 256 next 3907

08:12:37.821 [info] InUse at 7363119e4300 of size 256 next 1828

08:12:37.822 [info] InUse at 7363119e4400 of size 256 next 1892

08:12:37.822 [info] InUse at 7363119e4500 of size 256 next 1759

08:12:37.822 [info] InUse at 7363119e4600 of size 256 next 310

08:12:37.822 [info] InUse at 7363119e4700 of size 256 next 1670

08:12:37.823 [info] InUse at 7363119e4800 of size 256 next 1758

08:12:37.823 [info] InUse at 7363119e4900 of size 256 next 3781

08:12:37.823 [info] InUse at 7363119e4a00 of size 256 next 1851

08:12:37.823 [info] InUse at 7363119e4b00 of size 256 next 1741

08:12:37.823 [info] InUse at 7363119e4c00 of size 256 next 1674

08:12:37.823 [info] InUse at 7363119e4d00 of size 256 next 274

08:12:37.824 [info] InUse at 7363119e4e00 of size 256 next 1666

08:12:37.824 [info] InUse at 7363119e4f00 of size 256 next 1879

08:12:37.824 [info] InUse at 7363119e5000 of size 256 next 1744

08:12:37.824 [info] InUse at 7363119e5100 of size 256 next 72

08:12:37.824 [info] InUse at 7363119e5200 of size 256 next 1755

08:12:37.824 [info] InUse at 7363119e5300 of size 256 next 426

08:12:37.825 [info] InUse at 7363119e5400 of size 256 next 1702

08:12:37.825 [info] InUse at 7363119e5500 of size 256 next 1785

08:12:37.825 [info] InUse at 7363119e5600 of size 256 next 1553

08:12:37.825 [info] InUse at 7363119e5700 of size 256 next 1517

08:12:37.825 [info] InUse at 7363119e5800 of size 256 next 1733

08:12:37.825 [info] InUse at 7363119e5900 of size 256 next 3883

08:12:37.825 [info] InUse at 7363119e5a00 of size 256 next 146

08:12:37.826 [info] InUse at 7363119e5b00 of size 256 next 1726

08:12:37.826 [info] InUse at 7363119e5c00 of size 256 next 1678

08:12:37.826 [info] InUse at 7363119e5d00 of size 256 next 3708

08:12:37.826 [info] InUse at 7363119e5e00 of size 256 next 1539

08:12:37.826 [info] InUse at 7363119e5f00 of size 256 next 1684

08:12:37.826 [info] InUse at 7363119e6000 of size 256 next 1751

08:12:37.827 [info] InUse at 7363119e6100 of size 256 next 1552

08:12:37.827 [info] InUse at 7363119e6200 of size 256 next 1736

08:12:37.827 [info] InUse at 7363119e6300 of size 256 next 1543

08:12:37.827 [info] InUse at 7363119e6400 of size 256 next 1723

08:12:37.827 [info] InUse at 7363119e6500 of size 256 next 325

08:12:37.827 [info] InUse at 7363119e6600 of size 256 next 1880

08:12:37.827 [info] InUse at 7363119e6700 of size 256 next 1685

08:12:37.827 [info] InUse at 7363119e6800 of size 256 next 200

08:12:37.827 [info] InUse at 7363119e6900 of size 256 next 1900

08:12:37.828 [info] InUse at 7363119e6a00 of size 256 next 1677

08:12:37.828 [info] InUse at 7363119e6b00 of size 256 next 8

08:12:37.828 [info] InUse at 7363119e6c00 of size 256 next 1767

08:12:37.828 [info] InUse at 7363119e6d00 of size 256 next 1794

08:12:37.828 [info] InUse at 7363119e6e00 of size 256 next 1790

08:12:37.828 [info] InUse at 7363119e6f00 of size 256 next 1776

08:12:37.828 [info] InUse at 7363119e7000 of size 256 next 1579

08:12:37.828 [info] InUse at 7363119e7100 of size 256 next 1550

08:12:37.829 [info] InUse at 7363119e7200 of size 256 next 1698

08:12:37.829 [info] InUse at 7363119e7300 of size 256 next 1683

08:12:37.829 [info] InUse at 7363119e7400 of size 256 next 1839

08:12:37.829 [info] InUse at 7363119e7500 of size 256 next 1556

08:12:37.829 [info] InUse at 7363119e7600 of size 256 next 56

08:12:37.830 [info] InUse at 7363119e7700 of size 256 next 1893

08:12:37.830 [info] InUse at 7363119e7800 of size 256 next 3837

08:12:37.830 [info] Free  at 7363119e7900 of size 2173440 next 2023

08:12:37.830 [info] InUse at 736311bfa300 of size 147456 next 3854

08:12:37.831 [info] InUse at 736311c1e300 of size 147456 next 3887

08:12:37.831 [info] InUse at 736311c42300 of size 228864 next 3908

08:12:37.831 [info] Free  at 736311c7a100 of size 310345216 next 347

08:12:37.832 [info] InUse at 736324471f00 of size 147456 next 199

08:12:37.832 [info] InUse at 736324495f00 of size 147456 next 447

08:12:37.832 [info] InUse at 7363244b9f00 of size 73728 next 3843

08:12:37.833 [info] InUse at 7363244cbf00 of size 73728 next 7

08:12:37.833 [info] InUse at 7363244ddf00 of size 81408 next 256

08:12:37.833 [info] InUse at 7363244f1d00 of size 256 next 1657

08:12:37.833 [info] InUse at 7363244f1e00 of size 256 next 233

08:12:37.833 [info] Free  at 7363244f1f00 of size 832512 next 3910

08:12:37.834 [info] InUse at 7363245bd300 of size 73728 next 257

08:12:37.834 [info] InUse at 7363245cf300 of size 4096 next 3790

08:12:37.834 [info] InUse at 7363245d0300 of size 4096 next 128

08:12:37.834 [info] InUse at 7363245d1300 of size 4096 next 335

08:12:37.834 [info] InUse at 7363245d2300 of size 4096 next 1908

08:12:37.834 [info] InUse at 7363245d3300 of size 3584 next 116

08:12:37.834 [info] InUse at 7363245d4100 of size 3584 next 410

08:12:37.834 [info] InUse at 7363245d4f00 of size 3584 next 307

08:12:37.834 [info] InUse at 7363245d5d00 of size 3584 next 139

08:12:37.835 [info] InUse at 7363245d6b00 of size 2048 next 1817

08:12:37.835 [info] InUse at 7363245d7300 of size 2048 next 1917

08:12:37.835 [info] InUse at 7363245d7b00 of size 2048 next 297

08:12:37.835 [info] InUse at 7363245d8300 of size 2048 next 1791

08:12:37.835 [info] InUse at 7363245d8b00 of size 256 next 1801

08:12:37.835 [info] InUse at 7363245d8c00 of size 256 next 348

08:12:37.835 [info] InUse at 7363245d8d00 of size 256 next 3741

08:12:37.835 [info] InUse at 7363245d8e00 of size 256 next 264

08:12:37.835 [info] InUse at 7363245d8f00 of size 256 next 324

08:12:37.835 [info] InUse at 7363245d9000 of size 256 next 1806

08:12:37.836 [info] InUse at 7363245d9100 of size 256 next 3713

08:12:37.836 [info] InUse at 7363245d9200 of size 256 next 117

08:12:37.836 [info] InUse at 7363245d9300 of size 256 next 1859

08:12:37.836 [info] InUse at 7363245d9400 of size 256 next 3745

08:12:37.836 [info] InUse at 7363245d9500 of size 256 next 20

08:12:37.836 [info] InUse at 7363245d9600 of size 256 next 3702

08:12:37.837 [info] InUse at 7363245d9700 of size 256 next 3879

08:12:37.837 [info] InUse at 7363245d9800 of size 256 next 226

08:12:37.837 [info] InUse at 7363245d9900 of size 256 next 1910

08:12:37.837 [info] InUse at 7363245d9a00 of size 256 next 237

08:12:37.837 [info] InUse at 7363245d9b00 of size 256 next 229

08:12:37.837 [info] InUse at 7363245d9c00 of size 256 next 136

08:12:37.837 [info] InUse at 7363245d9d00 of size 256 next 448

08:12:37.837 [info] InUse at 7363245d9e00 of size 256 next 286

08:12:37.837 [info] InUse at 7363245d9f00 of size 256 next 213

08:12:37.837 [info] InUse at 7363245da000 of size 256 next 37

08:12:37.837 [info] InUse at 7363245da100 of size 256 next 346

08:12:37.838 [info] InUse at 7363245da200 of size 256 next 165

08:12:37.838 [info] InUse at 7363245da300 of size 256 next 318

08:12:37.838 [info] InUse at 7363245da400 of size 256 next 372

08:12:37.838 [info] InUse at 7363245da500 of size 256 next 443

08:12:37.838 [info] InUse at 7363245da600 of size 256 next 193

08:12:37.838 [info] InUse at 7363245da700 of size 256 next 127

08:12:37.838 [info] InUse at 7363245da800 of size 256 next 43

08:12:37.838 [info] InUse at 7363245da900 of size 256 next 550

08:12:37.838 [info] InUse at 7363245daa00 of size 256 next 376

08:12:37.838 [info] InUse at 7363245dab00 of size 256 next 467

08:12:37.839 [info] InUse at 7363245dac00 of size 256 next 47

08:12:37.839 [info] InUse at 7363245dad00 of size 256 next 207

08:12:37.839 [info] InUse at 7363245dae00 of size 256 next 540

08:12:37.839 [info] InUse at 7363245daf00 of size 256 next 408

08:12:37.839 [info] InUse at 7363245db000 of size 256 next 279

08:12:37.839 [info] InUse at 7363245db100 of size 256 next 76

08:12:37.839 [info] InUse at 7363245db200 of size 256 next 532

08:12:37.839 [info] InUse at 7363245db300 of size 6291456 next 2880

08:12:37.840 [info] Free  at 736324bdb300 of size 150994944 next 151

08:12:37.840 [info] InUse at 73632dbdb300 of size 157286400 next 1816

08:12:37.840 [info] InUse at 7363371db300 of size 157286400 next 1783

08:12:37.840 [info] InUse at 7363407db300 of size 157286400 next 3758

08:12:37.840 [info] InUse at 736349ddb300 of size 157286400 next 1731

08:12:37.840 [info] Free  at 7363533db300 of size 262984704 next 48

08:12:37.840 [info] InUse at 736362ea8700 of size 34865152 next 319

08:12:37.840 [info] InUse at 736364fe8700 of size 34865152 next 321

08:12:37.840 [info] InUse at 736367128700 of size 34865152 next 221

08:12:37.840 [info] InUse at 736369268700 of size 34865152 next 419

08:12:37.840 [info] Free  at 73636b3a8700 of size 349442560 next 18446744073709551615

08:12:37.840 [info]      Summary of in-use Chunks by size: 

08:12:37.841 [info] 102 Chunks of size 256 totalling 25.5KiB

08:12:37.841 [info] 20 Chunks of size 512 totalling 10.0KiB

08:12:37.841 [info] 4 Chunks of size 1024 totalling 4.0KiB

08:12:37.841 [info] 8 Chunks of size 2048 totalling 16.0KiB

08:12:37.841 [info] 8 Chunks of size 3584 totalling 28.0KiB

08:12:37.841 [info] 4 Chunks of size 4096 totalling 16.0KiB

08:12:37.841 [info] 6 Chunks of size 73728 totalling 432.0KiB

08:12:37.841 [info] 1 Chunks of size 81408 totalling 79.5KiB

08:12:37.842 [info] 1 Chunks of size 115712 totalling 113.0KiB

08:12:37.842 [info] 6 Chunks of size 147456 totalling 864.0KiB

08:12:37.842 [info] 1 Chunks of size 148736 totalling 145.2KiB

08:12:37.842 [info] 1 Chunks of size 228864 totalling 223.5KiB

08:12:37.842 [info] 4 Chunks of size 294912 totalling 1.12MiB

08:12:37.842 [info] 1 Chunks of size 2618880 totalling 2.50MiB

08:12:37.842 [info] 1 Chunks of size 6291456 totalling 6.00MiB

08:12:37.842 [info] 4 Chunks of size 34865152 totalling 133.00MiB

08:12:37.842 [info] 4 Chunks of size 157286400 totalling 600.00MiB

08:12:37.842 [info] Sum Total of in-use chunks: 744.53MiB

08:12:37.843 [info] Total bytes in pool: 1880004864 memory_limit_: 1880005017 available bytes: 153 curr_region_allocation_bytes_: 3760010240

08:12:37.843 [info] Stats: 
Limit:                      1880005017
InUse:                       780699904
MaxInUse:                   1871703296
NumAllocs:                       97350
MaxAllocSize:               1152347648
Reserved:                            0
PeakReserved:                        0
LargestFreeBlock:                    0


08:12:37.843 [warning] **________________*_______***********************************____________*********__________________

08:12:37.843 [error] Execution of replica 0 failed: RESOURCE_EXHAUSTED: Out of memory while trying to allocate 503840768 bytes.
BufferAssignment OOM Debugging.
BufferAssignment stats:
             parameter allocation:         0B
              constant allocation:       273B
        maybe_live_out allocation:    1.88GiB
     preallocated temp allocation:     7.5KiB
  preallocated temp fragmentation:     1.2KiB (16.09%)
                 total allocation:    1.88GiB
              total fragmentation:     7.8KiB (0.00%)
Peak buffers:
	Buffer 1:
		Size: 480.50MiB
		XLA Label: fusion
		Shape: f32[492032,256]
		==========================

	Buffer 2:
		Size: 480.50MiB
		XLA Label: fusion
		Shape: f32[492032,256]
		==========================

	Buffer 3:
		Size: 480.50MiB
		XLA Label: fusion
		Shape: f32[125960192]
		==========================

	Buffer 4:
		Size: 480.50MiB
		XLA Label: fusion
		Shape: f32[492032,256]
		==========================

	Buffer 5:
		Size: 288.0KiB
		XLA Label: fusion
		Shape: f32[3,3,64,128]
		==========================

	Buffer 6:
		Size: 288.0KiB
		XLA Label: fusion
		Shape: f32[3,3,64,128]
		==========================

	Buffer 7:
		Size: 288.0KiB
		XLA Label: fusion
		Shape: f32[73728]
		==========================

	Buffer 8:
		Size: 288.0KiB
		XLA Label: fusion
		Shape: f32[3,3,64,128]
		==========================

	Buffer 9:
		Size: 6.8KiB
		XLA Label: fusion
		Shape: f32[3,3,3,64]
		==========================

	Buffer 10:
		Size: 6.8KiB
		XLA Label: fusion
		Shape: f32[3,3,3,64]
		==========================

	Buffer 11:
		Size: 6.8KiB
		XLA Label: fusion
		Shape: f32[1728]
		==========================

	Buffer 12:
		Size: 6.8KiB
		XLA Label: fusion
		Shape: f32[3,3,3,64]
		==========================

	Buffer 13:
		Size: 2.0KiB
		XLA Label: fusion
		Shape: f32[256,2]
		==========================

	Buffer 14:
		Size: 2.0KiB
		XLA Label: fusion
		Shape: f32[512]
		==========================

	Buffer 15:
		Size: 2.0KiB
		XLA Label: fusion
		Shape: f32[256,2]
		==========================



```

## Testing

```elixir
test_directory = "/home/le-moski/Documents/FEFU/7S/AI/lab1-dirtyplates/platesv2/plates/test/*.jpg"

test_filenames =
  Path.wildcard(test_directory)
  |> Stream.chunk_every(batch_size, batch_size)

test_data_raw =
  test_filenames
  |> Task.async_stream(fn batch ->
    batch
    |> Enum.map(fn filename ->
      {:ok, img} = StbImage.read_file(filename, channels: image_channels)
      StbImage.resize(img, image_h, image_w) |> StbImage.to_nx()
    end)
    |> Nx.stack()
  end)

test_data =
  test_data_raw
  |> Stream.map(fn {:ok, batch} -> batch |> Nx.divide(channel_value_max) end)
```

<!-- livebook:{"output":true} -->

```
#Stream<[
  enum: #Function<3.112894672/2 in Task.build_stream/3>,
  funs: [#Function<50.38948127/1 in Stream.map/2>]
]>
```

```elixir
predictions =
  test_data
  |> Stream.map(fn batch ->
    Axon.predict(model, model_state, batch)
  end)

prediction_labels =
  predictions
  |> Stream.map(fn batch ->
    batch
    |> Nx.to_list()
    |> Enum.map(
      &if &1 |> Enum.at(0) >= &1 |> Enum.at(1) do
        "Cleaned"
      else
        "Dirty"
      end
    )
  end)
```

<!-- livebook:{"output":true} -->

```
#Stream<[
  enum: #Function<3.112894672/2 in Task.build_stream/3>,
  funs: [#Function<50.38948127/1 in Stream.map/2>, #Function<50.38948127/1 in Stream.map/2>,
   #Function<50.38948127/1 in Stream.map/2>]
]>
```

```elixir
predictions |> Enum.to_list()
```

<!-- livebook:{"output":true} -->

```
[
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186328.98827>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186328.98830>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186328.98833>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186328.98836>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186325.94801>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186325.94804>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186325.94807>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186325.94810>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186325.94813>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186328.98846>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186321.95355>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...]
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186321.95357>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186322.99151>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186328.98858>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186325.94881>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186328.98903>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186326.102539>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186328.98921>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186329.96026>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186325.94929>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186326.102571>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186330.95297>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186321.95421>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186321.95441>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186326.102666>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186326.102702>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186329.96108>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186329.96120>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186329.96125>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186321.95471>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186326.102744>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186328.99042>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186330.95355>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186330.95367>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186325.95024>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186330.95386>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[20][2]
    EXLA.Backend<cuda:0, 0.691480651.217186330.95409>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, ...],
      ...
    ]
  >,
  #Nx.Tensor<
    f32[4][2]
    EXLA.Backend<cuda:0, 0.691480651.217186330.95412>
    [
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN],
      [NaN, NaN]
    ]
  >
]
```

```elixir
results = Stream.zip([test_filenames, test_data_raw, prediction_labels])
```

<!-- livebook:{"output":true} -->

```
#Function<76.38948127/2 in Stream.zip_with/2>
```

```elixir
csv =
  results
  |> Stream.flat_map(fn batch ->
    {filenames_batch, _, labels_batch} = batch

    Enum.zip([filenames_batch, labels_batch])
    |> Enum.map(fn {filename, label} ->
      %{id: Path.basename(filename, ".jpg"), label: String.downcase(label)}
    end)
  end)
  |> CSV.encode(headers: [:id, :label])
  |> Enum.join()

File.write!("/home/le-moski/Documents/FEFU/7S/AI/lab1-dirtyplates/results.csv", csv)
```

<!-- livebook:{"output":true} -->

```
:ok
```

```elixir
visualization =
  results
  |> Stream.map(fn batch ->
    {filenames_batch, {:ok, raw_batch}, labels_batch} = batch

    filenames_batch
    |> Stream.with_index(fn filename, index ->
      Kino.Layout.grid(
        [
          Kino.Markdown.new("# " <> Path.basename(filename)),
          raw_batch |> Nx.to_list() |> Enum.at(index) |> Nx.tensor(type: :u8) |> Kino.Image.new(),
          labels_batch |> Enum.at(index) |> Kino.Markdown.new()
        ],
        boxed: true
      )
    end)
    |> Enum.to_list()
    |> Kino.Layout.grid()
  end)
```

<!-- livebook:{"output":true} -->

```
#Stream<[
  enum: #Function<76.38948127/2 in Stream.zip_with/2>,
  funs: [#Function<50.38948127/1 in Stream.map/2>]
]>
```

```elixir
visualization |> Enum.at(0)
```

```elixir
visualization |> Enum.at(1)
```