CALM / app.py
MorenoLaQuatra
Solving errors in demo
0aab0ed
raw
history blame
17.2 kB
import streamlit as st
import numpy as np
from st_btn_select import st_btn_select
from streamlit_option_menu import option_menu
from cgi import test
import streamlit as st
import pandas as pd
from PIL import Image
import os
import glob
from transformers import CLIPVisionModel, AutoTokenizer, AutoModel
from transformers import ViTFeatureExtractor, ViTForImageClassification
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
from torch.utils.data import DataLoader
from transformers import default_data_collator
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from bokeh.models.widgets import Button
from bokeh.models import CustomJS
from streamlit_bokeh_events import streamlit_bokeh_events
from webcam import webcam
## Global Variables
MP3_ROOT_PATH = "sample_mp3/"
SPECTROGRAMS_PATH = "sample_spectrograms/"
IMAGE_SIZE = 224
MEAN = torch.tensor([0.48145466, 0.4578275, 0.40821073])
STD = torch.tensor([0.26862954, 0.26130258, 0.27577711])
TEXT_MODEL = 'bert-base-uncased'
CLIP_TEXT_MODEL_PATH = "text_model/"
CLIP_VISION_MODEL_PATH = "vision_model/"
## NavBar
def streamlit_menu(example=1):
if example == 1:
# 1. as sidebar menu
with st.sidebar:
selected = option_menu(
menu_title="Main Menu", # required
options=["Text", "Audio", "Camera"], # required
icons=["chat-text", "mic", "camera"], # optional
menu_icon="cast", # optional
default_index=0, # optional
)
return selected
if example == 2:
# 2. horizontal menu w/o custom style
selected = option_menu(
menu_title=None, # required
options=["Text", "Audio", "Camera"], # required
icons=["chat-text", "mic", "camera"], # optional
menu_icon="cast", # optional
default_index=0, # optional
orientation="horizontal",
)
return selected
if example == 3:
# 2. horizontal menu with custom style
selected = option_menu(
menu_title=None, # required
options=["Text", "Audio", "Camera"], # required
icons=["chat-text", "mic", "camera"], # optional
menu_icon="cast", # optional
default_index=0, # optional
orientation="horizontal",
styles={
"container": {"padding": "0!important", "background-color": "#fafafa"},
"icon": {"color": "#ffde59", "font-size": "25px"},
"nav-link": {
"font-size": "25px",
"text-align": "left",
"margin": "0px",
"--hover-color": "#eee",
},
"nav-link-selected": {"background-color": "#5271ff"},
},
)
return selected
## Draw Sidebar
def draw_sidebar(
key,
plot=False,
):
st.write(
"""
# Sidebar
```python
Think.
Search.
Feel.
```
"""
)
st.slider("From 1 to 10, how cool is this app?", min_value=1, max_value=10, key=key)
option = st_btn_select(('option1', 'option2', 'option3'), index=2)
st.write(f'Selected option: {option}')
## Change Color
#def change_color(styles="")
## VisionDataset
class VisionDataset(Dataset):
preprocess = transforms.Compose([
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD)
])
def __init__(self, image_paths: list):
self.image_paths = image_paths
def __getitem__(self, idx):
return self.preprocess(Image.open(self.image_paths[idx]).convert('RGB'))
def __len__(self):
return len(self.image_paths)
## TextDataset
class TextDataset(Dataset):
def __init__(self, text: list, tokenizer, max_len):
self.len = len(text)
self.tokens = tokenizer(text, padding='max_length',
max_length=max_len, truncation=True)
def __getitem__(self, idx):
token = self.tokens[idx]
return {'input_ids': token.ids, 'attention_mask': token.attention_mask}
def __len__(self):
return self.len
## CLIP Demo
class CLIPDemo:
def __init__(self, vision_encoder, text_encoder, tokenizer,
batch_size: int = 64, max_len: int = 64, device='cuda'):
""" Initializes CLIPDemo
it has the following functionalities:
image_search: Search images based on text query
zero_shot: Zero shot image classification
analogy: Analogies with embedding space arithmetic.
Args:
vision_encoder: Fine-tuned vision encoder
text_encoder: Fine-tuned text encoder
tokenizer: Transformers tokenizer
device (torch.device): Running device
batch_size (int): Size of mini-batches used to embeddings
max_length (int): Tokenizer max length
Example:
>>> demo = CLIPDemo(vision_encoder, text_encoder, tokenizer)
>>> demo.compute_image_embeddings(test_df.image.to_list())
>>> demo.image_search('یک مرد و یک زن')
>>> demo.zero_shot('./workers.jpg')
>>> demo.anology('./sunset.jpg', additional_text='دریا')
"""
self.vision_encoder = vision_encoder.eval().to(device)
self.text_encoder = text_encoder.eval().to(device)
self.batch_size = batch_size
self.device = device
self.tokenizer = tokenizer
self.max_len = max_len
self.text_embeddings_ = None
self.image_embeddings_ = None
def compute_image_embeddings(self, image_paths: list):
self.image_paths = image_paths
dataloader = DataLoader(VisionDataset(
image_paths=image_paths), batch_size=self.batch_size, num_workers=8)
embeddings = []
with torch.no_grad():
bar = st.progress(0)
for i, images in tqdm(enumerate(dataloader), desc='computing image embeddings'):
bar.progress(int(i/len(dataloader)*100))
image_embedding = self.vision_encoder(
pixel_values=images.to(self.device)).pooler_output
embeddings.append(image_embedding)
bar.empty()
self.image_embeddings_ = torch.cat(embeddings)
def compute_text_embeddings(self, text: list):
self.text = text
dataloader = DataLoader(TextDataset(text=text, tokenizer=self.tokenizer, max_len=self.max_len),
batch_size=self.batch_size, collate_fn=default_data_collator)
embeddings = []
with torch.no_grad():
for tokens in tqdm(dataloader, desc='computing text embeddings'):
image_embedding = self.text_encoder(input_ids=tokens["input_ids"].to(self.device),
attention_mask=tokens["attention_mask"].to(self.device)).pooler_output
embeddings.append(image_embedding)
self.text_embeddings_ = torch.cat(embeddings)
def text_query_embedding(self, query: str = 'A happy song'):
tokens = self.tokenizer(query, return_tensors='pt')
with torch.no_grad():
text_embedding = self.text_encoder(input_ids=tokens["input_ids"].to(self.device),
attention_mask=tokens["attention_mask"].to(self.device)).pooler_output
return text_embedding
def most_similars(self, embeddings_1, embeddings_2):
values, indices = torch.cosine_similarity(
embeddings_1, embeddings_2).sort(descending=True)
return values.cpu(), indices.cpu()
def image_search(self, query: str, top_k=10):
""" Search images based on text query
Args:
query (str): text query
image_paths (list[str]): a bunch of image paths
top_k (int): number of relevant images
"""
query_embedding = self.text_query_embedding(query=query)
_, indices = self.most_similars(self.image_embeddings_, query_embedding)
matches = np.array(self.image_paths)[indices][:top_k]
songs_path = []
for match in matches:
filename = os.path.split(match)[1]
filename = int(filename.replace(".jpeg", ""))
audio_path = MP3_ROOT_PATH + "/" + f"{filename:06d}"
songs_path.append(audio_path)
return songs_path
## Draw text page
def draw_text(
key,
plot=False,
):
image = Image.open("data/logo.png")
st.image(image, use_column_width="always")
if 'model' not in st.session_state:
#with st.spinner('We are orginizing your traks...'):
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:1000])
st.session_state["model"] = model
""
""
moods = ['-', 'angry', 'calm', 'happy', 'sad']
genres = ['-', 'house', 'pop', 'rock', 'techno']
artists = ['-', 'bad dad', 'lazy magnet', 'the astronauts', 'yan yalego']
years = ['-', '80s', '90s', '2000s', '2010s']
col1, col2 = st.columns(2)
mood = col1.selectbox('Which mood do you feel right now?', moods, help="Select a mood here")
genre = col2.selectbox('Which genre do you want to listen?', genres, help="Select a genre here")
artist = col1.selectbox('Which artist do you like best?', artists, help="Select an artist here")
year = col2.selectbox('Which period do you want to relive?', years, help="Select a period here")
button_form = st.button('Search', key="button_form")
st.text_input("Otherwise, describe the song you are looking for!", value="", key="sentence")
button_sentence = st.button('Search', key="button_sentence")
if (button_sentence and st.session_state.sentence != "") or (button_form and not (mood == "-" and artist == "-" and genre == "-" and year == "-")):
if button_sentence:
sentence = st.session_state.sentence
elif button_form:
sentence = mood if mood != "-" else ""
sentence = sentence + " " + genre if genre != "-" else sentence
sentence = sentence + " " + artist if artist != "-" else sentence
sentence = sentence + " " + year if year != "-" else sentence
song_paths = st.session_state.model.image_search(sentence)
for song in song_paths:
song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
st.write('**"'+song_name+'"**' + ' by ' + artist_name)
st.audio(song + ".mp3", format="audio/mp3", start_time=0)
## Draw audio page
def draw_audio(
key,
plot=False,
):
image = Image.open("data/logo.png")
st.image(image, use_column_width="always")
if 'model' not in st.session_state:
#with st.spinner('We are orginizing your traks...'):
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH+"/*.jpeg")[:5000])
st.session_state["model"] = model
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
#st.success('Done!')
""
""
st.write("Please, describe the kind of song you are looking for!")
stt_button = Button(label="Start Recording", margin=[5,5,5,200], width=200, default_size=10, width_policy='auto', button_type='primary')
stt_button.js_on_event("button_click", CustomJS(code="""
var recognition = new webkitSpeechRecognition();
recognition.continuous = false;
recognition.interimResults = true;
recognition.onresult = function (e) {
var value = "";
for (var i = e.resultIndex; i < e.results.length; ++i) {
if (e.results[i].isFinal) {
value += e.results[i][0].transcript;
}
}
if ( value != "") {
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
}
}
recognition.start();
"""))
result = streamlit_bokeh_events(
stt_button,
events="GET_TEXT",
key="listen",
refresh_on_update=False,
override_height=75,
debounce_time=0)
if result:
if "GET_TEXT" in result:
sentence = result.get("GET_TEXT")
st.write('You asked for: "' + sentence + '"')
song_paths = st.session_state.model.image_search(sentence)
for song in song_paths:
song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
st.write('**"'+song_name+'"**' + ' by ' + artist_name)
st.audio(song + ".mp3", format="audio/mp3", start_time=0)
## Draw camera page
def draw_camera(
key,
plot=False,
):
image = Image.open("data/logo.png")
st.image(image, use_column_width="always")
if 'model' not in st.session_state:
#with st.spinner('We are orginizing your traks...'):
text_encoder = AutoModel.from_pretrained(CLIP_TEXT_MODEL_PATH, local_files_only=True)
vision_encoder = CLIPVisionModel.from_pretrained(CLIP_VISION_MODEL_PATH, local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL)
model = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
model.compute_image_embeddings(glob.glob(SPECTROGRAMS_PATH + "/*.jpeg")[:5000])
st.session_state["model"] = model
#st.session_state['model'] = CLIPDemo(vision_encoder=vision_encoder, text_encoder=text_encoder, tokenizer=tokenizer)
#st.session_state.model.compute_image_embeddings(glob.glob("/data1/mlaquatra/TSOAI_hack/data/spectrograms/*.jpeg")[:100])
#st.success('Done!')
""
""
st.write("Please, show us how you are feeling today!")
captured_image = webcam()
if captured_image is None:
st.write("Waiting for capture...")
else:
# st.write("Got an image from the webcam:")
# st.image(captured_image)
# st.write(type(captured_image))
# st.write(captured_image)
# st.write(captured_image.size)
captured_image = captured_image.convert("RGB")
vit_feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
vit_model = ViTForImageClassification.from_pretrained("ViT_ER/best_checkpoint", local_files_only=True)
inputs = vit_feature_extractor(images=[captured_image], return_tensors="pt")
outputs = vit_model(**inputs, output_hidden_states=True)
#st.write(outputs)
emotions = ['Anger', 'Disgust', 'Fear', 'Happiness', 'Sadness', 'Surprise', 'Neutral']
mood = emotions[np.argmax(outputs.logits.detach().cpu().numpy())]
#st.write(mood)
st.write(f"Your mood seems to be **{mood.lower()}** today! Here's a song for you that matches with how you feel!")
song_paths = st.session_state.model.image_search(mood)
for song in song_paths:
song_name = df.loc[df['track_id'] == int(song[-6:])]['track_title'].to_list()[0]
artist_name = df.loc[df['track_id'] == int(song[-6:])]['artist_name'].to_list()[0]
st.write('**"'+song_name+'"**' + ' by ' + artist_name)
st.audio(song + ".mp3", format="audio/mp3", start_time=0)
## Main
selected = streamlit_menu(example=3)
df = pd.read_csv('full_metadata.csv', index_col=False)
if selected == "Text":
# st.title(f"You have selected {selected}")
draw_text("text", plot=True)
if selected == "Audio":
# st.title(f"You have selected {selected}")
draw_audio("audio", plot=True)
if selected == "Camera":
# st.title(f"You have selected {selected}")
#draw_camera("camera", plot=True)
pass
# with st.sidebar:
# draw_sidebar("sidebar")