Spaces:
Running
Running
File size: 5,434 Bytes
8defc61 206ed66 8defc61 206ed66 604feee 206ed66 ab3e62e 206ed66 8defc61 206ed66 8defc61 206ed66 ab3e62e 206ed66 ab3e62e 206ed66 ab3e62e 206ed66 ab3e62e 206ed66 768757a 3563942 768757a 206ed66 768757a 8defc61 604feee 206ed66 8defc61 206ed66 8defc61 206ed66 8defc61 c464f06 ab3e62e c464f06 604feee 8defc61 604feee 8defc61 206ed66 8defc61 604feee 206ed66 604feee 206ed66 604feee 8defc61 604feee 8defc61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Hint: this cheatsheet is magic! https://cheat-sheet.streamlit.app/
import constants
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
from transformers import BertForSequenceClassification, AutoTokenizer
import altair as alt
from altair import X, Y, Scale
import base64
import re
def preprocess_text(arabic_text):
"""Apply preprocessing to the given Arabic text.
Args:
arabic_text: The Arabic text to be preprocessed.
Returns:
The preprocessed Arabic text.
"""
no_urls = re.sub(
r"(https|http)?:\/\/(\w|\.|\/|\?|\=|\&|\%)*\b",
"",
arabic_text,
flags=re.MULTILINE,
)
no_english = re.sub(r"[a-zA-Z]", "", no_urls)
return no_english
@st.cache_data
def render_svg(svg):
"""Renders the given svg string."""
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
html = rf'<p align="center"> <img src="data:image/svg+xml;base64,{b64}"/> </p>'
c = st.container()
c.write(html, unsafe_allow_html=True)
@st.cache_data
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv(index=None).encode("utf-8")
@st.cache_resource
def load_model(model_name):
model = BertForSequenceClassification.from_pretrained(model_name)
return model
tokenizer = AutoTokenizer.from_pretrained(constants.MODEL_NAME)
model = load_model(constants.MODEL_NAME)
def compute_ALDi(sentences):
"""Computes the ALDi score for the given sentences.
Args:
sentences: A list of Arabic sentences.
Returns:
A list of ALDi scores for the given sentences.
"""
progress_text = "Computing ALDi..."
my_bar = st.progress(0, text=progress_text)
BATCH_SIZE = 4
output_logits = []
preprocessed_sentences = [preprocess_text(s) for s in sentences]
for first_index in range(0, len(preprocessed_sentences), BATCH_SIZE):
inputs = tokenizer(
preprocessed_sentences[first_index : first_index + BATCH_SIZE],
return_tensors="pt",
padding=True,
)
outputs = model(**inputs).logits.reshape(-1).tolist()
output_logits = output_logits + [max(min(o, 1), 0) for o in outputs]
my_bar.progress(
min((first_index + BATCH_SIZE) / len(preprocessed_sentences), 1),
text=progress_text,
)
my_bar.empty()
return output_logits
@st.cache_data
def render_metadata():
"""Renders the metadata."""
html = r"""<p align="center">
<a href="https://huggingface.co/AMR-KELEG/Sentence-ALDi"><img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-8A2BE2"></a>
<a href="https://github.com/AMR-KELEG/ALDi"><img alt="GitHub" src="https://img.shields.io/badge/%F0%9F%93%A6%20GitHub-orange"></a>
<a href="https://arxiv.org/abs/2310.13747"><img alt="arXiv" src="https://img.shields.io/badge/arXiv-2310.13747-b31b1b.svg"></a>
</p>"""
c = st.container()
c.write(html, unsafe_allow_html=True)
render_svg(open("assets/ALDi_logo.svg").read())
render_metadata()
tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])
with tab1:
sent = st.text_input(
"Arabic Sentence:", placeholder="Enter an Arabic sentence.", on_change=None
)
# TODO: Check if this is needed!
clicked = st.button("Submit")
if sent:
ALDi_score = compute_ALDi([sent])[0]
ORANGE_COLOR = "#FF8000"
fig, ax = plt.subplots(figsize=(8, 1))
fig.patch.set_facecolor("none")
ax.set_facecolor("none")
ax.spines["left"].set_color(ORANGE_COLOR)
ax.spines["bottom"].set_color(ORANGE_COLOR)
ax.tick_params(axis="x", colors=ORANGE_COLOR)
ax.spines[["right", "top"]].set_visible(False)
ax.barh(y=[0], width=[ALDi_score], color=ORANGE_COLOR)
ax.set_xlim(0, 1)
ax.set_ylim(-1, 1)
ax.set_title(f"ALDi score is: {round(ALDi_score, 3)}", color=ORANGE_COLOR)
ax.get_yaxis().set_visible(False)
ax.set_xlabel("ALDi score", color=ORANGE_COLOR)
st.pyplot(fig)
print(sent)
with open("logs.txt", "a") as f:
f.write(sent + "\n")
with tab2:
file = st.file_uploader("Upload a file", type=["txt"])
if file is not None:
df = pd.read_csv(file, sep="\t", header=None)
df.columns = ["Sentence"]
df.reset_index(drop=True, inplace=True)
# TODO: Run the model
df["ALDi"] = compute_ALDi(df["Sentence"].tolist())
# A horizontal rule
st.markdown("""---""")
chart = (
alt.Chart(df.reset_index())
.mark_area(color="darkorange", opacity=0.5)
.encode(
x=X(field="index", title="Sentence Index"),
y=Y("ALDi", scale=Scale(domain=[0, 1])),
)
)
st.altair_chart(chart.interactive(), use_container_width=True)
col1, col2 = st.columns([4, 1])
with col1:
# Display the output
st.table(
df,
)
with col2:
# Add a download button
csv = convert_df(df)
st.download_button(
label=":file_folder: Download predictions as CSV",
data=csv,
file_name="ALDi_scores.csv",
mime="text/csv",
)
|