Spaces:
Runtime error
Runtime error
import spaces | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, EulerAncestralDiscreteScheduler | |
import torch | |
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
# Load the models | |
controlnet = ControlNetModel.from_pretrained( | |
"briaai/BRIA-2.2-ControlNet-Recoloring", | |
torch_dtype=torch.float16 | |
).to('cuda') | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"briaai/BRIA-2.2", | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
device_map='auto', | |
low_cpu_mem_usage=True, | |
offload_state_dict=True, | |
).to('cuda') | |
pipe.scheduler = EulerAncestralDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
steps_offset=1 | |
) | |
pipe.force_zeros_for_empty_prompt = False | |
def resize_image(image): | |
image = image.convert('RGB') | |
current_size = image.size | |
transform = gr.Image(height=1024, width=1024, keep_aspect_ratio=True, source="upload", tool="editor") | |
resized_image = transform.postprocess(image) | |
return resized_image | |
def generate_image(input_image, prompt, controlnet_conditioning_scale): | |
# Always use a random seed for diversity in outputs | |
seed = np.random.randint(2147483647) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
# Resize and prepare the image | |
input_image = resize_image(input_image) | |
grayscale_image = input_image.convert('L').convert('RGB') | |
# Generate the image with fixed 30 steps | |
images = pipe( | |
prompt=prompt, | |
image=grayscale_image, | |
num_inference_steps=30, | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
generator=generator, | |
).images | |
return images[0] | |
# Gradio Interface | |
description = "Anything to Anything. Transform anything to anything. Allow an adjuster for controlnet scale." | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1><center>Image Transformation with Bria Recolor ControlNet</center></h1>") | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label='Upload your image', type="pil") | |
prompt = gr.Textbox(label='Enter your prompt') | |
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) | |
submit_button = gr.Button('Transform Image') | |
with gr.Column(): | |
output_image = gr.Image(label='Transformed Image') | |
submit_button.click(fn=generate_image, inputs=[input_image, prompt, controlnet_conditioning_scale], outputs=output_image) | |
demo.queue().launch() |