Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import os | |
import gradio as gr | |
from PIL import Image | |
from diffusers import ( | |
DiffusionPipeline, | |
StableDiffusionControlNetImg2ImgPipeline, | |
ControlNetModel, | |
DPMSolverMultistepScheduler, # <-- Added import | |
EulerDiscreteScheduler # <-- Added import | |
) | |
# Initialize both pipelines | |
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda") | |
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16) | |
main_pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
"SG161222/Realistic_Vision_V2.0", | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
).to("cuda") | |
# Sampler map | |
SAMPLER_MAP = { | |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), | |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config), | |
} | |
# Inference function | |
def inference( | |
control_image: Image.Image, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: float = 8.0, | |
controlnet_conditioning_scale: float = 1, | |
strength: float = 0.9, | |
seed: int = -1, | |
sampler = "DPM++ Karras SDE", | |
): | |
if prompt is None or prompt == "": | |
raise gr.Error("Prompt is required") | |
# Generate the initial image | |
init_image = init_pipe(prompt).images[0] | |
# Rest of your existing code | |
control_image = control_image.resize((512, 512)) | |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config) | |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator() | |
out = main_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=init_image, | |
control_image=control_image, | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
generator=generator, | |
strength=strength, | |
num_inference_steps=30, | |
) | |
return out.images[0] | |
with gr.Blocks() as app: | |
gr.Markdown( | |
''' | |
<center> | |
<span style="color:blue; font-size:24px;">Illusion Diffusion π</span> | |
<span style="color:black; font-size:16px;">Generate stunning illusion artwork with Stable Diffusion</span> | |
<span style="color:black; font-size:10px;">A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)</span> | |
</center> | |
<p style="text-align:center;"> | |
<span style="color:black; font-size:10px;">This project works by using the QR Control Net by Monster Labs: [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster). | |
Given a prompt, we generate an init image and pass that alongside the control illusion to create a stunning illusion! Credit to : MrUgleh (https://twitter.com/MrUgleh) for discovering the workflow :)</span> | |
</p> | |
''' | |
) | |
with gr.Row(): | |
with gr.Column(): | |
control_image = gr.Image(label="Input Illusion", type="pil") | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw") | |
with gr.Accordion(label="Advanced Options", open=False): | |
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale") | |
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength") | |
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale") | |
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE") | |
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True) | |
run_btn = gr.Button("Run") | |
with gr.Column(): | |
result_image = gr.Image(label="Illusion Diffusion Output") | |
run_btn.click( | |
inference, | |
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, sampler], | |
outputs=[result_image] | |
) | |
app.queue(concurrency_count=4, max_size=20) | |
if __name__ == "__main__": | |
app.launch(debug=True) |