Spaces:
Runtime error
Runtime error
File size: 2,170 Bytes
2571a09 b40804f 2571a09 b40804f 2571a09 b40804f 2571a09 b40804f 2571a09 b40804f 2571a09 b40804f 3d77d68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
import torch
from PIL import Image
from diffusers import AutoPipelineForText2Image, DDIMScheduler
from transformers import CLIPVisionModelWithProjection
import numpy as np
# Initialize the pipeline with GPU support
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
device="cuda", # Use GPU device if available
)
# Configure the scheduler for the pipeline
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
# Load IP adapter with specified weights and set the scale for each component
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name=[
"ip-adapter-plus_sdxl_vit-h.safetensors",
"ip-adapter-plus-face_sdxl_vit-h.safetensors"
]
)
pipeline.set_ip_adapter_scale([0.7, 0.5])
# Ensure the model and its components are moved to GPU
pipeline.to("cuda")
def transform_image(face_image):
generator = torch.Generator(device="cuda").manual_seed(0)
# Process the input face image
if isinstance(face_image, Image.Image):
processed_face_image = face_image
elif isinstance(face_image, np.ndarray):
processed_face_image = Image.fromarray(face_image)
else:
raise ValueError("Unsupported image format")
# Load the style image from the local path
style_image_path = "InstaSoyjak/soyjak2.jpeg"
style_image = Image.open(style_image_path)
# Perform the transformation using the configured pipeline
image = pipeline(
prompt="soyjak",
ip_adapter_image=[style_image, processed_face_image],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
num_inference_steps=30,
generator=generator,
).images[0]
return image
# Gradio interface setup
demo = gr.Interface(
fn=transform_image,
inputs=gr.Image(label="Upload your face image"),
outputs=gr.Image(label="Your Soyjak"),
title="InstaSoyjak - turn anyone into a Soyjak",
description="All you need to do is upload an image. Please use responsibly.",
)
demo.queue(max_size=20)
demo.launch() |