Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
from diffusers import AutoPipelineForText2Image, DDIMScheduler | |
from transformers import CLIPVisionModelWithProjection | |
import numpy as np | |
import spaces | |
# Initialize the image encoder and pipeline outside the function | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
"h94/IP-Adapter", | |
subfolder="models/image_encoder", | |
torch_dtype=torch.float16, | |
) | |
pipeline = AutoPipelineForText2Image.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
torch_dtype=torch.float16, | |
image_encoder=image_encoder, | |
) | |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) | |
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"]) | |
pipeline.enable_model_cpu_offload() | |
def transform_image(face_image, soy_strength, face_strength): | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
if isinstance(face_image, Image.Image): | |
processed_face_image = face_image | |
elif isinstance(face_image, np.ndarray): | |
processed_face_image = Image.fromarray(face_image) | |
else: | |
raise ValueError("Unsupported image format") | |
style_image_path = "examples/soyjak2.jpg" | |
style_image = Image.open(style_image_path) | |
# Set the IP adapter scale dynamically based on the sliders | |
pipeline.set_ip_adapter_scale([soy_strength, face_strength]) | |
image = pipeline( | |
prompt="soyjak", | |
ip_adapter_image=[style_image, processed_face_image], | |
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality", | |
num_inference_steps=50, | |
generator=generator, | |
).images[0] | |
return image | |
# Gradio interface setup with dynamic sliders | |
demo = gr.Interface( | |
fn=transform_image, | |
inputs=[ | |
gr.Image(label="Upload your face image"), | |
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.7, label="Soy Strength"), | |
gr.Slider(minimum=0, maximum=1, step=0.05, value=1.0, label="Face Strength") # Renamed to Face Strength | |
], | |
outputs=gr.Image(label="Your Soyjak"), | |
title="InstaSoyjak - turn anyone into a Soyjak", | |
description="All you need to do is upload an image and adjust the strengths. **Please use responsibly.**", | |
) | |
demo.queue(max_size=20) | |
demo.launch() | |