Spaces:
Build error
Build error
Delete app.py
Browse files
app.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import streamlit as st
|
4 |
-
import googleapiclient.discovery
|
5 |
-
import pandas as pd
|
6 |
-
from transformers import pipeline
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import seaborn as sns
|
9 |
-
|
10 |
-
st.title('Анализатор комментариев :red[YouTube] :sunglasses:')
|
11 |
-
|
12 |
-
|
13 |
-
# Инициализируем модель Hugging Face для анализа тональности текста
|
14 |
-
# Кэшируем ресурс для одной загрузки модели на все сессии
|
15 |
-
#@st.cache_resource
|
16 |
-
def load_model():
|
17 |
-
"""
|
18 |
-
Loads the 'blanchefort/rubert-base-cased-sentiment' model from HuggingFace
|
19 |
-
and saves to cache for consecutive loads.
|
20 |
-
"""
|
21 |
-
model = pipeline(
|
22 |
-
"sentiment-analysis",
|
23 |
-
"blanchefort/rubert-base-cased-sentiment")
|
24 |
-
return model
|
25 |
-
|
26 |
-
|
27 |
-
def extract_video_id(url: str) -> str:
|
28 |
-
"""
|
29 |
-
Extracts the video ID from a YouTube video URL.
|
30 |
-
Args: url (str): The YouTube video URL.
|
31 |
-
Returns: str: The extracted video ID,
|
32 |
-
or an empty string if the URL is not valid.
|
33 |
-
"""
|
34 |
-
pattern = r"(?<=v=)[\w-]+(?=&|\b)"
|
35 |
-
match = re.search(pattern, url)
|
36 |
-
if match:
|
37 |
-
return match.group()
|
38 |
-
else:
|
39 |
-
return ""
|
40 |
-
|
41 |
-
|
42 |
-
def download_comments(video_id: str) -> pd.DataFrame:
|
43 |
-
"""
|
44 |
-
Downloads comments from a YouTube video based on the provided video ID
|
45 |
-
and returns them as a DataFrame.
|
46 |
-
Args: video_id (str): The video ID of the YouTube video.
|
47 |
-
Returns: DataFrame: A DataFrame containing the downloaded comments from the video.
|
48 |
-
"""
|
49 |
-
DEV_KEY = os.getenv('API_KEY_YOUTUBE')
|
50 |
-
youtube = googleapiclient.discovery.build("youtube",
|
51 |
-
"v3",
|
52 |
-
developerKey=DEV_KEY)
|
53 |
-
request = youtube.commentThreads().list(part="snippet",
|
54 |
-
videoId=video_id,
|
55 |
-
maxResults=100)
|
56 |
-
response = request.execute()
|
57 |
-
comments = []
|
58 |
-
for item in response['items']:
|
59 |
-
comment = item['snippet']['topLevelComment']['snippet']
|
60 |
-
comments.append([comment['authorDisplayName'],
|
61 |
-
comment['publishedAt'],
|
62 |
-
comment['updatedAt'],
|
63 |
-
comment['likeCount'],
|
64 |
-
comment['textDisplay'],])
|
65 |
-
return pd.DataFrame(comments,
|
66 |
-
columns=['author',
|
67 |
-
'published_at',
|
68 |
-
'updated_at',
|
69 |
-
'like_count',
|
70 |
-
'text',])
|
71 |
-
|
72 |
-
|
73 |
-
def analyze_emotions_in_comments(df: pd.DataFrame) -> tuple:
|
74 |
-
"""
|
75 |
-
Takes a DataFrame with comments,
|
76 |
-
processes the emotional sentiment of each comment in the DataFrame
|
77 |
-
Args: dataframe (pandas.DataFrame): DataFrame containing comments to analyze.
|
78 |
-
Returns: tuple: containing the updated DataFrame with the added 'Emotional Sentiment' column
|
79 |
-
and the total count of processed comments.
|
80 |
-
"""
|
81 |
-
model = load_model()
|
82 |
-
selected_columns = ['text', 'author', 'published_at']
|
83 |
-
df = df[selected_columns]
|
84 |
-
res_list = []
|
85 |
-
res_list = model(df['text'][:513].to_list())
|
86 |
-
full_df = pd.concat([pd.DataFrame(res_list), df], axis=1)
|
87 |
-
return (full_df, len(res_list))
|
88 |
-
|
89 |
-
|
90 |
-
def plot_heatmap_from_dataframe(df: pd.DataFrame) -> plt:
|
91 |
-
"""
|
92 |
-
Visualizes the data from the input DataFrame and returns a matplotlib plot object.
|
93 |
-
Args: df (DataFrame): The input DataFrame containing the data to be visualized.
|
94 |
-
Returns: plt: A matplotlib plot object showing the visualization of the data.
|
95 |
-
"""
|
96 |
-
df['published_at'] = pd.to_datetime(df['published_at'])
|
97 |
-
df['Date'] = df['published_at'].dt.date
|
98 |
-
df['Hour'] = df['published_at'].dt.hour
|
99 |
-
pivot_table = df.pivot_table(index='Hour',
|
100 |
-
columns='Date',
|
101 |
-
values='text',
|
102 |
-
aggfunc='count')
|
103 |
-
plt.figure(figsize=(10, 6))
|
104 |
-
sns.heatmap(pivot_table,
|
105 |
-
cmap='YlGnBu')
|
106 |
-
plt.title('Количество комментариев по часам и датам')
|
107 |
-
plt.xlabel('Дата')
|
108 |
-
plt.ylabel('Час')
|
109 |
-
return plt
|
110 |
-
|
111 |
-
|
112 |
-
def visualize_data(df: pd.DataFrame):
|
113 |
-
"""
|
114 |
-
Visualizes the data from the input DataFrame and returns a matplotlib figure object.
|
115 |
-
Args: df (DataFrame): The input DataFrame containing the data to be visualized.
|
116 |
-
Returns: fig: A matplotlib figure object
|
117 |
-
"""
|
118 |
-
data = df['label'].value_counts()
|
119 |
-
fig, ax = plt.subplots()
|
120 |
-
plt.title("Эмоциональная окраска комментариев на YouTube")
|
121 |
-
label = data.index
|
122 |
-
ax.pie(data, labels=label, autopct='%1.1f%%')
|
123 |
-
return fig
|
124 |
-
|
125 |
-
|
126 |
-
def change_url():
|
127 |
-
st.session_state.start = False
|
128 |
-
|
129 |
-
|
130 |
-
if "start" not in st.session_state:
|
131 |
-
st.session_state.start = False
|
132 |
-
|
133 |
-
# Получаем id видеоролика из URL для отправки запроса
|
134 |
-
url = st.text_input(label="Enter URL from YouTube", on_change=change_url)
|
135 |
-
video_id = extract_video_id(url)
|
136 |
-
if video_id != "":
|
137 |
-
if btn_start := st.button('Загрузить комментарии'):
|
138 |
-
st.session_state.start = True
|
139 |
-
|
140 |
-
if st.session_state.start:
|
141 |
-
# Выводим таблицу с результатами на странице
|
142 |
-
comments_df = download_comments(video_id)
|
143 |
-
with st.spinner('Analyzing comments...'):
|
144 |
-
full_df, num_comments = analyze_emotions_in_comments(comments_df)
|
145 |
-
st.success(f'Готово! Обработано {num_comments} комментариев.')
|
146 |
-
st.write(full_df)
|
147 |
-
st.markdown('***')
|
148 |
-
|
149 |
-
# Выводим heatmap комментариев по часам и датам
|
150 |
-
st.pyplot(plot_heatmap_from_dataframe(full_df))
|
151 |
-
st.markdown('***')
|
152 |
-
|
153 |
-
# Выводим круговую диаграмму
|
154 |
-
st.pyplot(visualize_data(full_df))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|