app file
Browse files
app.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import (
|
| 2 |
+
TrOCRConfig,
|
| 3 |
+
TrOCRProcessor,
|
| 4 |
+
TrOCRForCausalLM,
|
| 5 |
+
ViTConfig,
|
| 6 |
+
ViTModel,
|
| 7 |
+
VisionEncoderDecoderModel,
|
| 8 |
+
)
|
| 9 |
+
import gradio as gr
|
| 10 |
+
|
| 11 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
| 12 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
| 13 |
+
def ocr(image):
|
| 14 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
| 15 |
+
generated_ids = model.generate(pixel_values)
|
| 16 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 17 |
+
return generated_text
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
demo = gr.Interface(fn=ocr, inputs="image",outputs= ["text"])
|
| 21 |
+
demo.launch()
|