File size: 3,317 Bytes
a5f38d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import PIL.Image
import gradio as gr
import base64
import os
import google.generativeai as genai
from dotenv import load_dotenv
load_dotenv()
# Set Google API key 
GOOGLe_API_KEY = os.getenv("GOOGLE_API_KEY")
genai.configure(api_key = GOOGLe_API_KEY)

# Create the Model
txt_model = genai.GenerativeModel('gemini-pro')
vis_model = genai.GenerativeModel('gemini-pro-vision')

# Image to Base 64 Converter
def image_to_base64(image_path):
    with open(image_path, 'rb') as img:
        encoded_string = base64.b64encode(img.read())
    return encoded_string.decode('utf-8')

# Function that takes User Inputs and displays it on ChatUI
def query_message(history,txt,img):
    if not img:
        history += [(txt,None)]
        return history
    base64 = image_to_base64(img)
    data_url = f"data:image/jpeg;base64,{base64}"
    history += [(f"{txt} ![]({data_url})", None)]
    return history

# Function that takes User Inputs, generates Response and displays on Chat UI
def llm_response(history,text,img):
    if not img:
        response = txt_model.generate_content(text)
        history += [(None,response.text)]
        return history, gr.update(value = "")

    else:
        img = PIL.Image.open(img)
        response = vis_model.generate_content([text,img])
        history += [(None,response.text)]
        return history, gr.update(value = "")
def image_to_base64(image_path):
    """
    Reads an image file and returns its base64 encoded representation.

    Args:
        image_path (str): The path to the image file.

    Returns:
        str: The base64 encoded representation of the image data.
    """

    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")


# Encode the logo image into base64
logo_base64 = image_to_base64("pixelpk_logo.png")

markdown_content = f"""
<img src="data:image/png;base64,{logo_base64}" alt="Feedback Logo" style="width: 100px; height: 100px; margin-top: 10px;" />
<h1>MultiModal Chatbot</h1>
<p style="margin-top: 5px;">Multimodal chatbot is designed to chat with text and images.</p>
"""
css = """
h1 {
    text-align: center;
    display:block;
}
"""
# Interface Code
with gr.Blocks(gr.themes.Monochrome(), css = css) as app:
    # Display introductory markdown content
    gr.Markdown(f"<center>{markdown_content}</center>")
    with gr.Row():
        image_box = gr.Image(type = "filepath")
    
        chatbot = gr.Chatbot(scale = 3)
    text_box = gr.Textbox(
            placeholder="Enter text and press enter, or upload an image",
            container=False,
        )

    btn = gr.Button("Submit")
    clicked = btn.click(query_message,
                        [chatbot,text_box,image_box],
                        [chatbot]
                        ).then(llm_response,
                                [chatbot,text_box,image_box],
                                [chatbot, text_box]
                                )
    clicked = text_box.submit(query_message,
                        [chatbot,text_box,image_box],
                        [chatbot]
                        ).then(llm_response,
                                [chatbot,text_box,image_box],
                                [chatbot, text_box]
                                )
app.queue()
app.launch(share = True, debug = True)