Spaces:
Running
Running
Aananda-Giri
commited on
Commit
·
cdb697b
1
Parent(s):
0027d0f
Update space
Browse files- README.md +16 -1
- app.py +75 -57
- app_autogenerated_code.py +64 -0
- app_by_claude.py +54 -0
README.md
CHANGED
@@ -10,4 +10,19 @@ pinned: false
|
|
10 |
short_description: chat with gpt2-nepali
|
11 |
---
|
12 |
|
13 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
short_description: chat with gpt2-nepali
|
11 |
---
|
12 |
|
13 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
14 |
+
|
15 |
+
# Gradio instructions
|
16 |
+
|
17 |
+
```
|
18 |
+
# When prompted for a password, use an access token with write permissions.
|
19 |
+
|
20 |
+
# Generate one from your settings: https://huggingface.co/settings/tokens
|
21 |
+
|
22 |
+
git clone https://huggingface.co/spaces/Aananda-giri/gpt2-nepalis
|
23 |
+
|
24 |
+
# modify these files locally, then commit and push
|
25 |
+
|
26 |
+
git commit -am "Update space"
|
27 |
+
git push
|
28 |
+
```
|
app.py
CHANGED
@@ -1,64 +1,82 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
# app.py (second app by claude)
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from model import GPTModel
|
5 |
+
from transformers import PreTrainedTokenizerFast
|
6 |
+
from gpt_model_code import load_model_n_tokenizer, generate
|
7 |
+
# Load model and tokenizer once at startup
|
8 |
+
model, tokenizer = load_model_n_tokenizer()
|
9 |
+
model.eval()
|
10 |
|
11 |
+
def generate_text(prompt, max_new_tokens, top_k, top_p, temperature, repetition_penalty, penalize_len_below):
|
12 |
+
device = next(model.parameters()).device
|
13 |
+
|
14 |
+
# Convert top_k to None if using top_p
|
15 |
+
if top_p > 0:
|
16 |
+
top_k = None
|
17 |
+
else:
|
18 |
+
top_p = None
|
19 |
+
|
20 |
+
with torch.no_grad():
|
21 |
+
output_text = generate( # function uses `with torch.no_grad()` internally already
|
22 |
+
model=model,
|
23 |
+
prompt=prompt,
|
24 |
+
tokenizer=tokenizer,
|
25 |
+
max_new_tokens=max_new_tokens,
|
26 |
+
top_p=top_p,# top p sampling is prefered over top k if top_p != None
|
27 |
+
top_k=top_k,
|
28 |
+
temperature=0.7,
|
29 |
+
repetition_penalty=repetition_penalty, # New parameter: Repetition penalty factor
|
30 |
+
penalize_len_below=penalize_len_below # New parameter: Minimum content length for penalizing EOT token.
|
31 |
+
)
|
32 |
+
|
33 |
+
return output_text
|
34 |
|
35 |
+
# Create Gradio interface
|
36 |
+
with gr.Blocks(title="Nepali GPT-2 Text Generator") as interface:
|
37 |
+
gr.Markdown("# Nepali GPT-2 Text Generator")
|
38 |
+
gr.Markdown("Enter Nepali text to generate content using the custom GPT-2 model.")
|
39 |
+
|
40 |
+
with gr.Row():
|
41 |
+
with gr.Column():
|
42 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter Nepali text here...")
|
43 |
+
max_tokens = gr.Slider(minimum=1, maximum=512, value=50, step=1, label="Max New Tokens")
|
44 |
+
|
45 |
+
with gr.Row():
|
46 |
+
with gr.Column():
|
47 |
+
top_k = gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top K (set to 0 to use Top P)")
|
48 |
+
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
49 |
+
with gr.Column():
|
50 |
+
top_p = gr.Slider(minimum=0, maximum=1.0, value=0, step=0.05, label="Top P (set above 0 to use instead of Top K)")
|
51 |
+
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition Penalty")
|
52 |
+
|
53 |
+
min_length = gr.Slider(minimum=1, maximum=200, value=50, step=1, label="Minimum Length Penalty")
|
54 |
+
generate_btn = gr.Button("Generate Text")
|
55 |
+
|
56 |
+
with gr.Column():
|
57 |
+
output = gr.Textbox(label="Generated Text", lines=10)
|
58 |
+
|
59 |
+
# Add examples if you have any
|
60 |
+
gr.Examples(
|
61 |
+
examples=[
|
62 |
+
["रामले भात खायो", 50, 50, 0, 0.7, 1.2, 50],
|
63 |
+
["नेपाल एउटा", 100, 0, 0.9, 0.8, 1.2, 100],
|
64 |
+
],
|
65 |
+
inputs=[prompt, max_tokens, top_k, top_p, temperature, repetition_penalty, min_length],
|
66 |
+
outputs=output,
|
67 |
+
fn=generate_text,
|
68 |
+
cache_examples=True,
|
69 |
+
)
|
70 |
+
|
71 |
+
generate_btn.click(
|
72 |
+
fn=generate_text,
|
73 |
+
inputs=[prompt, max_tokens, top_p, top_k, temperature, repetition_penalty, min_length],
|
74 |
+
outputs=output
|
75 |
+
)
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
'''
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
'''
|
81 |
|
82 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_autogenerated_code.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
|
9 |
+
|
10 |
+
def respond(
|
11 |
+
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
17 |
+
):
|
18 |
+
messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
for val in history:
|
21 |
+
if val[0]:
|
22 |
+
messages.append({"role": "user", "content": val[0]})
|
23 |
+
if val[1]:
|
24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
response = ""
|
29 |
+
|
30 |
+
for message in client.chat_completion(
|
31 |
+
messages,
|
32 |
+
max_tokens=max_tokens,
|
33 |
+
stream=True,
|
34 |
+
temperature=temperature,
|
35 |
+
top_p=top_p,
|
36 |
+
):
|
37 |
+
token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
response += token
|
40 |
+
yield response
|
41 |
+
|
42 |
+
|
43 |
+
"""
|
44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
"""
|
46 |
+
demo = gr.ChatInterface(
|
47 |
+
respond,
|
48 |
+
additional_inputs=[
|
49 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
gr.Slider(
|
53 |
+
minimum=0.1,
|
54 |
+
maximum=1.0,
|
55 |
+
value=0.95,
|
56 |
+
step=0.05,
|
57 |
+
label="Top-p (nucleus sampling)",
|
58 |
+
),
|
59 |
+
],
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
demo.launch()
|
app_by_claude.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from model import GPTModel # Import your specific GPT model class
|
5 |
+
from transformers import PreTrainedTokenizerFast
|
6 |
+
|
7 |
+
# Load model and tokenizer once at startup
|
8 |
+
def load_model_n_tokenizer():
|
9 |
+
model = GPTModel.from_pretrained("Aananda-giri/GPT2-Nepali")
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model.to(device)
|
12 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained("Aananda-giri/NepaliBPE")
|
13 |
+
return model, tokenizer
|
14 |
+
|
15 |
+
# Initialize at startup
|
16 |
+
model, tokenizer = load_model_n_tokenizer()
|
17 |
+
model.eval()
|
18 |
+
|
19 |
+
def generate(prompt, max_new_tokens, top_k, temperature, repetition_penalty, penalize_len_below):
|
20 |
+
device = next(model.parameters()).device
|
21 |
+
|
22 |
+
with torch.no_grad():
|
23 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
24 |
+
|
25 |
+
outputs = model.generate(
|
26 |
+
input_ids,
|
27 |
+
max_new_tokens=max_new_tokens,
|
28 |
+
top_k=top_k,
|
29 |
+
temperature=temperature,
|
30 |
+
repetition_penalty=repetition_penalty,
|
31 |
+
min_length=penalize_len_below,
|
32 |
+
pad_token_id=tokenizer.pad_token_id,
|
33 |
+
eos_token_id=tokenizer.eos_token_id,
|
34 |
+
)
|
35 |
+
|
36 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
+
|
38 |
+
# Create Gradio interface
|
39 |
+
interface = gr.Interface(
|
40 |
+
fn=generate,
|
41 |
+
inputs=[
|
42 |
+
gr.Textbox(label="Prompt", placeholder="Enter Nepali text here..."),
|
43 |
+
gr.Slider(minimum=1, maximum=512, value=50, step=1, label="Max New Tokens"),
|
44 |
+
gr.Slider(minimum=1, maximum=100, value=3, step=1, label="Top K"),
|
45 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
46 |
+
gr.Slider(minimum=1.0, maximum=2.0, value=1.2, step=0.1, label="Repetition Penalty"),
|
47 |
+
gr.Slider(minimum=1, maximum=200, value=50, step=1, label="Minimum Length Penalty"),
|
48 |
+
],
|
49 |
+
outputs=gr.Textbox(label="Generated Text"),
|
50 |
+
title="Nepali GPT-2 Text Generator",
|
51 |
+
description="Enter Nepali text to generate content using the custom GPT-2 model."
|
52 |
+
)
|
53 |
+
|
54 |
+
interface.launch()
|