Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,49 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
|
|
3 |
import numpy as np
|
4 |
-
from pydub import AudioSegment
|
5 |
import io
|
6 |
|
7 |
-
# Load the ASR pipeline with
|
8 |
-
pipe = pipeline("automatic-speech-recognition", model="
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
samples = np.array(audio.get_array_of_samples())
|
19 |
-
|
20 |
-
# Normalize the data
|
21 |
-
samples = samples.astype(np.float32) / np.iinfo(audio.sample_width * 8).max
|
22 |
-
|
23 |
-
return samples
|
24 |
|
25 |
-
def transcribe_audio(
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
# Transcribe audio
|
30 |
-
transcription = pipe(
|
|
|
31 |
return transcription['text']
|
32 |
|
33 |
# Streamlit UI
|
34 |
-
st.title("Speech-to-Text Transcription App")
|
35 |
-
st.write("Upload an audio file to transcribe its content into text.")
|
36 |
|
37 |
-
uploaded_file = st.file_uploader("Choose an audio file...", type=["wav", "mp3"
|
38 |
|
39 |
if uploaded_file is not None:
|
40 |
try:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
except Exception as e:
|
46 |
st.error(f"An error occurred: {e}")
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
import librosa
|
4 |
+
import soundfile as sf
|
5 |
import numpy as np
|
|
|
6 |
import io
|
7 |
|
8 |
+
# Load the ASR pipeline with the specified model
|
9 |
+
pipe = pipeline("automatic-speech-recognition", model="kingabzpro/wav2vec2-large-xls-r-300m-Urdu")
|
10 |
|
11 |
+
def load_audio(audio_file):
|
12 |
+
"""Load an audio file and convert to the correct format."""
|
13 |
+
audio_bytes = audio_file.read()
|
14 |
+
audio = io.BytesIO(audio_bytes)
|
15 |
|
16 |
+
# Use librosa to load the audio file
|
17 |
+
audio_np, sr = librosa.load(audio, sr=16000)
|
18 |
|
19 |
+
return audio_np, sr
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def transcribe_audio(audio_np):
|
22 |
+
"""Transcribe the given audio numpy array using the model pipeline."""
|
23 |
+
# Convert the audio numpy array to a format acceptable by the pipeline
|
24 |
+
audio = sf.write(io.BytesIO(), audio_np, 16000, format='wav')
|
25 |
|
26 |
# Transcribe audio
|
27 |
+
transcription = pipe(audio)
|
28 |
+
|
29 |
return transcription['text']
|
30 |
|
31 |
# Streamlit UI
|
32 |
+
st.title("Urdu Speech-to-Text Transcription App")
|
33 |
+
st.write("Upload an audio file to transcribe its content into Urdu text.")
|
34 |
|
35 |
+
uploaded_file = st.file_uploader("Choose an audio file...", type=["wav", "mp3"])
|
36 |
|
37 |
if uploaded_file is not None:
|
38 |
try:
|
39 |
+
# Load and process the audio file
|
40 |
+
audio_np, sr = load_audio(uploaded_file)
|
41 |
+
|
42 |
+
# Transcribe the audio
|
43 |
+
text = transcribe_audio(audio_np)
|
44 |
+
|
45 |
+
# Display the transcription result
|
46 |
+
st.subheader("Transcription Result:")
|
47 |
+
st.write(text)
|
48 |
except Exception as e:
|
49 |
st.error(f"An error occurred: {e}")
|