Upload folder using huggingface_hub
Browse files- README.md +1 -7
- TableQAGradio.py +162 -0
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
title: TableQA
|
3 |
-
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.12.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: TableQA
|
3 |
+
app_file: TableQAGradio.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 4.12.0
|
|
|
|
|
6 |
---
|
|
|
|
TableQAGradio.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# ## Using Gradio to create a simple interface.
|
5 |
+
#
|
6 |
+
# Check out the library on [github](https://github.com/gradio-app/gradio-UI) and see the [getting started](https://gradio.app/getting_started.html) page for more demos.
|
7 |
+
|
8 |
+
# We'll start with a basic function that greets an input name.
|
9 |
+
|
10 |
+
# In[1]:
|
11 |
+
|
12 |
+
|
13 |
+
get_ipython().system('pip install -q gradio')
|
14 |
+
|
15 |
+
|
16 |
+
# Now we'll wrap this function with a Gradio interface.
|
17 |
+
|
18 |
+
# In[2]:
|
19 |
+
|
20 |
+
|
21 |
+
from transformers import pipeline
|
22 |
+
import pandas as pd
|
23 |
+
|
24 |
+
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
|
25 |
+
|
26 |
+
|
27 |
+
# In[ ]:
|
28 |
+
|
29 |
+
|
30 |
+
tsqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-sqa")
|
31 |
+
|
32 |
+
|
33 |
+
# In[ ]:
|
34 |
+
|
35 |
+
|
36 |
+
mstqa = pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wikisql")
|
37 |
+
|
38 |
+
|
39 |
+
# In[ ]:
|
40 |
+
|
41 |
+
|
42 |
+
mswtqa = pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wtq")
|
43 |
+
|
44 |
+
|
45 |
+
# In[6]:
|
46 |
+
|
47 |
+
|
48 |
+
table2 = pd.read_excel("/content/Sample.xlsx").astype(str)
|
49 |
+
table3 = table2.head(20)
|
50 |
+
|
51 |
+
|
52 |
+
# In[7]:
|
53 |
+
|
54 |
+
|
55 |
+
table3
|
56 |
+
|
57 |
+
|
58 |
+
# In[ ]:
|
59 |
+
|
60 |
+
|
61 |
+
#t4 = table3.reset_index()
|
62 |
+
table4
|
63 |
+
|
64 |
+
|
65 |
+
# In[9]:
|
66 |
+
|
67 |
+
|
68 |
+
query = "what is the highest delta onu rx power?"
|
69 |
+
query2 = "what is the lowest delta onu rx power?"
|
70 |
+
query3 = "what is the most frequent login id?"
|
71 |
+
query4 = "how many rows with nan values are there?"
|
72 |
+
query5 = "how many S2 values are there"
|
73 |
+
|
74 |
+
|
75 |
+
# In[11]:
|
76 |
+
|
77 |
+
|
78 |
+
result = tsqa(table=table3, query=query5)["answer"]
|
79 |
+
result
|
80 |
+
|
81 |
+
|
82 |
+
# In[12]:
|
83 |
+
|
84 |
+
|
85 |
+
from collections import Counter
|
86 |
+
Counter(result)
|
87 |
+
|
88 |
+
|
89 |
+
# In[13]:
|
90 |
+
|
91 |
+
|
92 |
+
#mstqa(table=table4, query=query1)["answer"]
|
93 |
+
|
94 |
+
|
95 |
+
# In[14]:
|
96 |
+
|
97 |
+
|
98 |
+
mswtqa(table=table3, query=query5)["answer"]
|
99 |
+
|
100 |
+
|
101 |
+
# In[15]:
|
102 |
+
|
103 |
+
|
104 |
+
def main(filepath, query):
|
105 |
+
|
106 |
+
table5 = pd.read_excel(filepath).head(20).astype(str)
|
107 |
+
result = tsqa(table=table5, query=query)["answer"]
|
108 |
+
return result
|
109 |
+
|
110 |
+
#greet("World")
|
111 |
+
|
112 |
+
|
113 |
+
# In[16]:
|
114 |
+
|
115 |
+
|
116 |
+
import gradio as gr
|
117 |
+
|
118 |
+
iface = gr.Interface(
|
119 |
+
fn=main,
|
120 |
+
inputs=[
|
121 |
+
gr.File(type="filepath", label="Upload XLSX file"),
|
122 |
+
gr.Textbox(type="text", label="Enter text"),
|
123 |
+
],
|
124 |
+
outputs=[gr.Textbox(type="text", label="Text Input Output")],
|
125 |
+
title="Multi-input Processor",
|
126 |
+
description="Upload an XLSX file and/or enter text, and the processed output will be displayed.",
|
127 |
+
)
|
128 |
+
|
129 |
+
# Launch the Gradio interface
|
130 |
+
iface.launch()
|
131 |
+
|
132 |
+
|
133 |
+
# In[21]:
|
134 |
+
|
135 |
+
|
136 |
+
get_ipython().system('pip install notebook')
|
137 |
+
|
138 |
+
|
139 |
+
# In[34]:
|
140 |
+
|
141 |
+
|
142 |
+
import os
|
143 |
+
import subprocess
|
144 |
+
|
145 |
+
# Use subprocess to execute the shell command
|
146 |
+
subprocess.run(["jupyter", "nbconvert", "--to", "script", "--format", "script", "--output", "/content/", "/content/drive/MyDrive/Colab Notebooks/NEW TableQA-GRADIO: Hello World.ipynb"])
|
147 |
+
|
148 |
+
|
149 |
+
# In[19]:
|
150 |
+
|
151 |
+
|
152 |
+
get_ipython().system('gradio deploy')
|
153 |
+
|
154 |
+
|
155 |
+
# In[32]:
|
156 |
+
|
157 |
+
|
158 |
+
from google.colab import drive
|
159 |
+
drive.mount('/content/drive')
|
160 |
+
|
161 |
+
|
162 |
+
# That's all! Go ahead and open that share link in a new tab. Check out our [getting started](https://gradio.app/getting_started.html) page for more complicated demos.
|