import streamlit as st import pickle import requests # from sklearn.feature_extraction.text import CountVectorizer def fetch_poster(movie_id): url = "https://api.themoviedb.org/3/movie/{}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US".format(movie_id) data = requests.get(url) data = data.json() poster_path = data['poster_path'] full_path = "https://image.tmdb.org/t/p/w500/" + poster_path return full_path def recommend(movie): index = movies[movies['title'] == movie].index[0] distances = sorted(list(enumerate(similarity[index])),reverse=True,key = lambda x: x[1]) recommend_Movies=[] recommended_movie_posters = [] for i in distances[1:6]: movie_id = movies.iloc[i[0]].movie_id recommended_movie_posters.append(fetch_poster(movie_id)) recommend_Movies.append(movies.iloc[i[0]].title) return recommended_movie_posters,recommend_Movies movies=pickle.load(open('movie_list.pkl','rb')) similarity=pickle.load(open("similarity.pkl",'rb')) # cv = CountVectorizer(max_features=10000,stop_words='english') # from sklearn.metrics.pairwise import cosine_similarity # vector = cv.fit_transform(movies['tags']).toarray() # similarity = cosine_similarity(vector) st.title("Movie Recommandor System") Movies_Name = st.selectbox('How would you like to recomend movies?',movies['title'].values) if st.button('recommend'): recommended_movie_posters,recommend_Movies=recommend(Movies_Name) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(recommend_Movies[0]) st.image(recommended_movie_posters[0]) with col2: st.text(recommend_Movies[1]) st.image(recommended_movie_posters[1]) with col3: st.text(recommend_Movies[2]) st.image(recommended_movie_posters[2]) with col4: st.text(recommend_Movies[3]) st.image(recommended_movie_posters[3]) with col5: st.text(recommend_Movies[4]) st.image(recommended_movie_posters[4])