Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import pipeline | |
from transformers import BartTokenizer, BartForConditionalGeneration | |
# Replace with your Hugging Face model repository path | |
model_repo_path = 'ASaboor/Bart_samsum' | |
# Load the model and tokenizer | |
model = BartForConditionalGeneration.from_pretrained(model_repo_path) | |
tokenizer = BartTokenizer.from_pretrained(model_repo_path) | |
# Initialize the summarization pipeline | |
summarizer = pipeline('summarization', model=model, tokenizer=tokenizer) | |
# Streamlit app layout | |
st.set_page_config(page_title="Text Summarization App", page_icon=":memo:", layout="wide") | |
st.title("Text Summarization App") | |
st.write(""" | |
This app uses a fine-tuned BART model to generate summaries of your input text. | |
Enter the text you want to summarize in the box below and click "Summarize" to see the result. | |
""") | |
# User input | |
text_input = st.text_area("Enter text to summarize", height=300, placeholder="Paste your text here...") | |
# Summarize the text | |
if st.button("Summarize"): | |
if text_input: | |
with st.spinner("Generating summary..."): | |
try: | |
# Generate summary | |
summary = summarizer(text_input, max_length=150, min_length=30, do_sample=False) | |
# Display summary | |
st.subheader("Summary") | |
st.write(summary[0]['summary_text']) | |
except Exception as e: | |
st.error(f"An error occurred during summarization: {e}") | |
else: | |
st.warning("Please enter some text to summarize.") | |
# Optional: Add a footer or additional information | |
st.markdown(""" | |
--- | |
Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face Transformers](https://huggingface.co/transformers/). | |
""") |