Abdulvahap commited on
Commit
3e757dd
1 Parent(s): 95cb30c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -62
app.py CHANGED
@@ -1,63 +1,44 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
2
  import gradio as gr
3
+
4
+ # Use a pipeline as a high-level helper
5
+ pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-70B")
6
+
7
+ # Load model directly
8
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-70B")
9
+ model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-70B")
10
+
11
+ # Load sentiment analysis pipeline
12
+ sentiment_analyzer = pipeline("sentiment-analysis")
13
+
14
+ # Initialize conversation context
15
+ context = []
16
+
17
+ def predict(context, input_text):
18
+ """Generate response based on context and input."""
19
+ context.append(input_text)
20
+ inputs = tokenizer(" ".join(context), return_tensors="pt")
21
+ outputs = model.generate(inputs.input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
22
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
23
+ context.append(response)
24
+ return response
25
+
26
+ def predict_with_emotion(context, input_text):
27
+ """Generate response with emotion detection."""
28
+ sentiment = sentiment_analyzer(input_text)[0]['label']
29
+ response = predict(context, input_text)
30
+ if sentiment == 'NEGATIVE':
31
+ response = "I'm sorry to hear that. " + response
32
+ elif sentiment == 'POSITIVE':
33
+ response = "That's great! " + response
34
+ return response
35
+
36
+ def chatbot(input_text):
37
+ """Gradio chatbot function."""
38
+ global context
39
+ response = predict_with_emotion(context, input_text)
40
+ return response
41
+
42
+ # Create Gradio interface
43
+ iface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Contextual Emotion-Aware LLaMA-70B Chatbot")
44
+ iface.launch()