Spaces:
Sleeping
Sleeping
Abdulvahap
commited on
Commit
•
3e757dd
1
Parent(s):
95cb30c
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,44 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
"""
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
response =
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
"""
|
43 |
-
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
2 |
import gradio as gr
|
3 |
+
|
4 |
+
# Use a pipeline as a high-level helper
|
5 |
+
pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-70B")
|
6 |
+
|
7 |
+
# Load model directly
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-70B")
|
9 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-70B")
|
10 |
+
|
11 |
+
# Load sentiment analysis pipeline
|
12 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
13 |
+
|
14 |
+
# Initialize conversation context
|
15 |
+
context = []
|
16 |
+
|
17 |
+
def predict(context, input_text):
|
18 |
+
"""Generate response based on context and input."""
|
19 |
+
context.append(input_text)
|
20 |
+
inputs = tokenizer(" ".join(context), return_tensors="pt")
|
21 |
+
outputs = model.generate(inputs.input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
22 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
context.append(response)
|
24 |
+
return response
|
25 |
+
|
26 |
+
def predict_with_emotion(context, input_text):
|
27 |
+
"""Generate response with emotion detection."""
|
28 |
+
sentiment = sentiment_analyzer(input_text)[0]['label']
|
29 |
+
response = predict(context, input_text)
|
30 |
+
if sentiment == 'NEGATIVE':
|
31 |
+
response = "I'm sorry to hear that. " + response
|
32 |
+
elif sentiment == 'POSITIVE':
|
33 |
+
response = "That's great! " + response
|
34 |
+
return response
|
35 |
+
|
36 |
+
def chatbot(input_text):
|
37 |
+
"""Gradio chatbot function."""
|
38 |
+
global context
|
39 |
+
response = predict_with_emotion(context, input_text)
|
40 |
+
return response
|
41 |
+
|
42 |
+
# Create Gradio interface
|
43 |
+
iface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Contextual Emotion-Aware LLaMA-70B Chatbot")
|
44 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|