Spaces:
Running
Running
import gradio as gr # Gradio library to create an interactive interface | |
from transformers import pipeline # Transformers libraries which imports pipeline to use Hugging-Face models | |
import pandas as pd # Pandas library for data manipulation and analysis | |
import matplotlib.pylab as plt # Matplot library for the interactive visualizations | |
# Initialize the analyzers | |
# Loads a pretrained model for the Arabic language | |
arabic_analyzer = pipeline('sentiment-analysis', model='CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment') | |
# Loads a pretrained model for the English language | |
english_analyzer = pipeline('sentiment-analysis', model='distilbert-base-uncased-finetuned-sst-2-english') | |
# Define function | |
def sentiment_analysis(language,file): | |
# Select the appropriate analyzer | |
if language == "Arabic": | |
analyzer = arabic_analyzer | |
else: | |
analyzer = english_analyzer | |
results = [] | |
# Read the sentences from the uploaded file | |
with open (file.name,'r') as fn: | |
sentences = fn.readlines() | |
# Perform sentiment analysis on each sentence | |
for sentence in sentences: | |
result = analyzer(sentence) | |
result = result[0] | |
results.append({ | |
"Sentence": sentence, | |
"Label": result['label'], | |
"Score": f"{result['score'] *100:.2f}%" | |
}) | |
# Convert the results into a DataFrame | |
df = pd.DataFrame(results) | |
# Ensure every label is lower, if not this will cause a logic error | |
# English labels are Upper but Arabic labels are lower | |
df['Label'] = df['Label'].str.lower() | |
# Take the "Label" column values | |
label_value = df['Label'].value_counts() | |
# Pre-Define the plot parameters | |
labels = ['Positive','Neutral','Negative'] | |
counts = [label_value.get('positive',0), | |
label_value.get('neutral',0), | |
label_value.get('negative',0)] | |
colors=['green','gray','red'] | |
# Create a bar plot | |
plt.bar(labels,counts,color=colors) | |
plt.title('Sentiment-Analysis') | |
plt.xlabel("Labels") | |
plt.ylabel("No. of sentences") | |
return df,plt | |
# Set up the Gradio interface | |
demo = gr.Interface( | |
fn=sentiment_analysis, | |
inputs=[gr.Dropdown(choices=["Arabic","English"], | |
label="Select a Language", | |
value="Arabic"), | |
gr.File(label="Upload a file")], | |
outputs=[gr.DataFrame(label="Results"), | |
gr.Plot(label="Bar plot")], | |
title="Sentiment-Analysis", | |
description="Gradio interface that allows users to Choose what language the sentences will be and upload a text file containing the sentences to be analyzed, the sentences will be classified and results will be in a formatted table along with a plot sentiment distribution" | |
) | |
demo.launch(debug=True) |